精英家教网 > 高中数学 > 题目详情
(2013•唐山二模)选修4-4:坐标系与参数方程
已知直线l:
x=m+tcosα
y=tsinα
(t为参数)经过椭圆C:
x=2cosφ
y=
3
sinφ
(φ为参数)的左焦点F.
(Ⅰ)求m的值;
(Ⅱ)设直线l与椭圆C交于A、B两点,求|FA|•|FB|的最大值和最小值.
分析:(Ⅰ)首先可以分析到题目中的直线方程是参数方程的形式,需要化简为一般方程,第I问即可求得.
(Ⅱ)直线与曲线交与交于A,B两点,可以把直线与曲线联立方程,用根与系数关系即可得到求解.
解答:解:(Ⅰ)将椭圆C的参数方程化为普通方程,得
x2
4
+
y2
3
=1.
a=2,b=
3
,c=1,则点F坐标为(-1,0).
l是经过点(m,0)的直线,故m=-1.…(4分)
(Ⅱ)将l的参数方程代入椭圆C的普通方程,并整理,得
(3cos2α+4sin2α)t2-6tcosα-9=0.
设点A,B在直线参数方程中对应的参数分别为t1,t2,则
|FA|•|FB|=|t1t2|=
9
3cos2α+4sin2α
=
9
3+sin2α

当sinα=0时,|FA|•|FB|取最大值3;
当sinα=±1时,|FA|•|FB|取最小值
9
4
.…(10分)
点评:此题主要考查直线参数方程化一般方程,及直线与曲线相交的问题,在此类问题中一般可用联立方程式后用韦达定理求解即可,属于综合性试题有一定的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•唐山二模)某校学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,对该校高二年级800名学生上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有60人,语文成绩优秀但外语不优秀的有140人,外语成绩优秀但语文不优秀的有100人.
(Ⅰ)能否在犯错概率不超过0.001的前提下认为该校学生的语文成绩与外语成绩有关系?
(Ⅱ)4名成员随机分成两组,每组2人,一组负责收集成绩,另一组负责数据处理.求学生甲分到负责收集成绩组,学生乙分到负责数据处理组的概率.
p(K2≥k0 0.010 0.005 0.001
k0 6.635 7.879 10.828
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山二模)若命题“?x0∈R,使得
x
2
0
+mx0+2m-3<0
”为假命题,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山二模)已知函数f(x)=sin(2x+α)在x=
π
12
时有极大值,且f(x-β)为奇函数,则α,β的一组可能值依次为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山二模)双曲线
x2
5
-
y2
4
=1
的顶点和焦点到其渐近线距离的比是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山二模)在数列{an}中,a1=1,a2=2,an+2等于an+an+1除以3的余数,则{an}的前89项的和等于
100
100

查看答案和解析>>

同步练习册答案