精英家教网 > 高中数学 > 题目详情

【题目】某家具厂有方木料,五合板,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料,五合板,生产每个书橱需要方木料,五合板,出售一张书桌可获利润元,出售一个书橱可获利润元.

1)如果只安排生产书桌,可获利润多少?

2)如果只安排生产书橱,可获利润多少?

3)怎样安排生产可使所得利润最大?

【答案】(1元;(2元,(3)生产书桌张、书橱个,可使所得利润最大.

【解析】(1)设只生产书桌张,可获利润元,则

,(2分)

所以当时,

即如果只安排生产书桌,最多可生产张书桌,获得利润元.(4分)

2)设只生产书橱个,可获利润元,则

,(6分)

所以当时,

即如果只安排生产书橱,最多可生产个书橱,获得利润元.(8分)

3)设生产书桌张、书橱个,利润总额为元,

.(9分)

在平面直角坐标系中作出上述不等式组所表示的平面区域,如下图中阴影部分所示.

作直线

把直线向右上方平移至的位置时,直线经过可行域上的点

此时取得最大值.(11分)

,解得点的坐标为

所以当时,

元.

综合(1)(2)可知,生产书桌张、书橱个,可使所得利润最大,最大利润为56000元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.

整理评分数据,将分数以为组距分成组:,得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:

B餐厅分数频数分布表

分数区间

频数

(Ⅰ)在抽样的100人中,求对A餐厅评分低于30的人数;

(Ⅱ)从对B餐厅评分在范围内的人中随机选出2人,求2人中恰有1人评分在范围内的概率;

(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点是椭圆上任意一点,线段的垂直平分线交于点,点的轨迹记为曲线.

(Ⅰ)求曲线的方程;

(Ⅱ)过的直线交曲线于不同的两点,交轴于点,已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1),设,试证明存在唯一零点并求的最大值;

(2)若关于的不等式的解集中有且只有两个整数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinxcosx+2 cos2x﹣
(1)求函数f(x)的最小正周期和单调减区间;
(2)已知△ABC的三个内角A,B,C的对边分别为a,b,c,其中a=7,若锐角A满足f( )= ,且sinB+sinC= ,求bc的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知内角ABC所对的边分别为abc,向量m=(2sin B,- ),n,且mn.

(1)求锐角B的大小;

(2)如果b=2,求△ABC的面积SABC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).

(I)求的解析式及单调递减区间;

(II)若存在 ,使函数成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左焦点为,左准线方程为.

(1)求椭圆的标准方程;

(2)已知直线交椭圆 两点.

①若直线经过椭圆的左焦点,交轴于点,且满足 .求证: 为定值;

②若为原点),求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}. (Ⅰ)求a的值;
(Ⅱ)若f(x)﹣2f( )≤k恒成立,求k的取值范围.

查看答案和解析>>

同步练习册答案