分析 (Ⅰ)连结BD,交AC于O,连结QO,则QO∥PD,由此能证明PD∥平面QAC.
(Ⅱ)∴三棱锥P-MND的体积VP-MND=VD-PMN=$\frac{1}{4}{V}_{D-PAC}$,由此能求出结果.
解答 证明:(Ⅰ)连结BD,交AC于O,连结QO,
∵正四棱锥P-ABCD中,ABCD是正方形,∴O是BD中点,
∵Q是PB中点,∴QO∥PD,
∵QO?平面QAC,PD?平面QAC,
∴PD∥平面QAC.
解:(Ⅱ)∵正四棱锥P-ABCD各棱长都为2,
点O,M,N,Q分别是AC,PA,PC,PB的中点,
∴AC=$\sqrt{4+4}=2\sqrt{2}$,PO=$\sqrt{A{P}^{2}-A{O}^{2}}$=$\sqrt{4-2}=\sqrt{2}$,
∴三棱锥P-MND的体积:
VP-MND=VD-PMN=$\frac{1}{4}{V}_{D-PAC}$=$\frac{1}{4}×\frac{1}{3}×\frac{1}{2}×2\sqrt{2}×\sqrt{2}×\sqrt{2}$=$\frac{\sqrt{2}}{6}$.
点评 本题考查线面平行的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | -3 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $4\sqrt{3}$ | B. | $4\sqrt{2}$ | C. | 6 | D. | $2\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com