【题目】若a,b,c均为实数,且,,,
试用反证法证明:a,b,c中至少有一个大于0.
【答案】见解析.
【解析】
利用反证法证明时,先否定结论,然后利用否定后的结论,结合已知的公理或者定理产生矛盾,说明假设不成立,原命题成立。设a、b、c都不大于0,a≤0,b≤0,c≤0,∴a+b+c≤0,而a+b+c=(x2-2y+)+(y2-2z+)+(z2-2x+)
∴a+b+c>0,这与a+b+c≤0矛盾。
(反证法)证明:设a、b、c都不大于0,a≤0,b≤0,c≤0,∴a+b+c≤0,
而a+b+c=(x2-2y+)+(y2-2z+)+(z2-2x+)
=(x2-2x)+(y2-2y)+(z2-2z)+π=(x-1)2+(y-1)2+(z-1)2+π-3,
∴a+b+c>0,这与a+b+c≤0矛盾,故a、b、c中至少有一个大于0.
科目:高中数学 来源: 题型:
【题目】某中学准备在开学时举行一次高三年级优秀学生座谈会,拟请20名来自本校高三(1)(2)(3)(4)班的学生参加,各班邀请的学生数如下表所示;
班级 | 高三(1) | 高三(2) | 高三(3) | 高三(4) |
人数 | 4 | 6 | 4 | 6 |
(1)从这20名学生中随机选出3名学生发言,求这3名学生中任意两个均不属于同一班级的概率;
(2)从这20名学生中随机选出3 名学生发言,设来自高三(3)的学生数为,求随机变量的概率分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的左右焦点分别为,直线经过椭圆的右焦点与椭圆交于两点,且.
(I)求直线的方程;
(II)已知过右焦点的动直线与椭圆交于不同两点,是否存在轴上一定点,使?(为坐标原点)若存在,求出点的坐标;若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,
(Ⅰ)求证:平面PED⊥平面PAC;
(Ⅱ)若直线PE与平面PAC所成的角的正弦值为 ,求二面角A﹣PC﹣D的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣e﹣x﹣2x.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;
(Ⅲ)已知1.4142< <1.4143,估计ln2的近似值(精确到0.001).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,该函数所表示的曲线上的一个最高点为,由此最高点到相邻的最低点间曲线与轴交于点.
(1)求函数解析式;
(2)求函数的单调区间;
(3)若,求的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A、B、C的对边分别为a、b、c,且sinCcosB+sinBcosC=3sinAcosB;
(1)求cosB的值;
(2)若 =2,且b=2 ,求a+c的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com