精英家教网 > 高中数学 > 题目详情

【题目】已知 ,在 的展开式中,第二项系数是第三项系数的
(Ⅰ)展开式中二项系数最大项;
(Ⅱ)若 ,求① 的值;② 的值.

【答案】解:(Ⅰ)由题得 ,解得

∴展开式中二项式系数最大项为

(Ⅱ)

,得

又令 ,得

②将

两边求导,得

,得


【解析】(1)先通过第二项系数是第三项系数的关系,得到关于n的方程,求出n。展开式中二项系数最大项与n的奇偶有关,当n=6时,展开式有7项,则最中间一项即第4项的二项式系数最大。
(2)将x+2拆公成(x+1)+1再展开成关于x+1的形式,第1小问中是除了常数项的所有项系数和,注意当x+1为0,1,-1的时候,式子的值表示的是哪些系数的和。第2小问中,系数前有倍数,考虑其导函数当x+1=1时的函数值即可。
【考点精析】解答此题的关键在于理解简单复合函数的导数的相关知识,掌握复合函数求导:,称则可以表示成为的函数,即为一个复合函数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的离心率为 ,且经过点M(﹣3,﹣1).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:x﹣y﹣2=0与椭圆C交于A,B两点,点P为椭圆C上一动点,当△PAB的面积最大时,求点P的坐标及△PAB的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列 满足 是数列 的前 项和.
(1)求数列 的通项公式
(2)令 ,求数列 的前 项和 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列程序运行的结果是__________


n=15

S=0

i=1

WHILE i<=n

S=S+i

i=i+2

WEND

PRINT S

END

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程
在直角坐标系 中,曲线 的参数方程为 为参数),直线 的方程为 ,以 为极点,以 轴正半轴为极轴,建立极坐标系,
(1)求曲线 和直线 的极坐标方程;
(2)若直线 与曲线 交于 两点,求 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.

(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;

(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值.(精确到1辆/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,且圆心在直线上.

Ⅰ)求此圆的方程

(Ⅱ)求与直线垂直且与圆相切的直线方程.

(Ⅲ)若点为圆上任意点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,∠BAC=90°,A1A⊥平面ABCA1A=AB=AC=2,A1C1=1,.

(1)证明:BCA1D

(2)求二面角A-CC1-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.2017年8月18日某省x个监测点数据统计如下:

空气污染指数(单位:μg/m3)

[0,50]

(50,100]

(100,150]

(150,200]

监测点个数

15

40

y

10

(1)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;

(2)在空气污染指数分别为50~100和150~200的监测点中,用分层抽样的方法抽取5个监测点,从中任意选取2个监测点,事件A两个都为良发生的概率是多少?

查看答案和解析>>

同步练习册答案