精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四棱锥,底面为菱形, 平面EF分别是的中点.

1)求证:

2)若直线与平面所成角的余弦值为,求二面角的余弦值.

【答案】(1)证明见解析 (2)

【解析】

1)在底面菱形中可得.平面,得.从而有线面垂直,因此线线垂直;

2)由于图中有两两垂直,因此以A为坐标原点,建立空间直角坐标系,设,写出各点坐标,求出平面的法向量,用空间向量法表示线面角求出a,再求解二面角.

1)证明:由四边形为菱形,,可得为正三角形.

因为E的中点,所以.,因此.

因为平面平面,所以.

平面平面,且

所以平面,又平面.所以.

2)由(1)知两两垂直,以A为坐标原点,建立空间直角坐标系,如图,设,则

所以,且为平面的法向量,设直线与平面所成的角为,由,则有

解得

所以

设平面的一法向量为,则

因此

因为,所以平面,故为平面的一法向量

所以.

因为二面角为锐角,所以所求二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数,如果存在实数,且不同时成立),使得恒成立,则称函数映像函数”.

1)判断函数是否是映像函数,如果是,请求出相应的的值,若不是,请说明理由;

2)已知函数是定义在上的映像函数,且当时,.求函数)的反函数;

3)在(2)的条件下,试构造一个数列,使得当时,,并求时,函数的解析式,及的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于在某个区间上有意义的函数,如果存在一次函数使得对于任意的,有恒成立,则称函数是函数的一个弱渐近函数.

1)若函数是函数在区间上的一个弱渐近函数,求实数的取值范围;

2)证明:函数是函数在区间上的弱渐近函数;

3)试问:函数与函数(其中为自然对数的底数)在区间上是否存在相同的弱渐近函数?如果存在,请求出对应的弱渐近函数应满足的条件;如不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,右焦点为,斜率为1的直线与椭圆交于两点,且,其中为坐标原点.

1)求椭圆的标准方程;

2)设过点且与直线平行的直线与椭圆交于两点,若点满足,且与椭圆的另一个交点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右顶点分别为AB,双曲线AB为顶点,焦距为,点P上在第一象限内的动点,直线AP与椭圆相交于另一点Q,线段AQ的中点为M,记直线AP的斜率为为坐标原点.

(1)求双曲线的方程;

(2)求点M的纵坐标的取值范围;

(3)是否存在定直线使得直线BP与直线OM关于直线对称?若存在,求直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足,对于任意都有,且,另

1)求函数的表达式;

2)当时,求函数的单调区间;

3)当时,判断函数在区间上的零点个数,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若存在实数,使得对于定义域内的任意实数,均有成立,则称函数为“可平衡”函数,有序数对称为函数的“平衡”数对.

1)若,判断是否为“可平衡”函数,并说明理由;

2)若,当变化时,求证:的“平衡”数对相同;

3)若,且均为函数的“平衡”数对.时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第十一届全国少数民族传统体育运动会在河南郑州举行,某项目比赛期间需要安排3名志愿者完成5项工作,每人至少完成一项,每项工作由一人完成,则不同的安排方式共有多少种

A.60B.90C.120D.150

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期为,将函数的图像向右平移个单位长度,再向下平移个单位长度,得到函数的图像.

(1)求函数的单调递增区间;

(2)在锐角中,角的对边分别为,若,求面积的最大值.

查看答案和解析>>

同步练习册答案