精英家教网 > 高中数学 > 题目详情

【题目】已知命题:若关于的方程无实数根,则;命题:若关于的方程有两个不相等的正实数根,则.

(1)写出命题的否命题,并判断命题的真假;

(2)判断命题“”的真假,并说明理由.

【答案】(1) 命题为真命题;(2) 命题“”为真命题.

【解析】试题分析:(1)根据否命题的定义,否定题设也否定结论,求出的否命题即可;(2)先判断出命题 的真假,从而判断出复合命题的真假即可.

试题解析:(1)解 :命题的否命题:若关于的方程有实数根,则.

∵关于的方程有实根

化简,得,解得.

∴命题为真命题.

(2)对于命题:若关于的方程无实数根,

化简,得,解得.

∴命题为真命题.

对于命题:关于的方程有两个不相等的正实根,

,解得

∴命题为真命题

∴命题“”为真命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为平行四边形, 是棱PD的中点,且

I)求证: Ⅱ)求二面角的大小;

Ⅲ)若上一点,且直线与平面成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆x21(0<b<1)的左焦点为F,左、右顶点分别为AC,上顶点为B,过FBC三点作圆P,其中圆心P的坐标为(mn)

(1)FC是圆P的直径,求椭圆的离心率;

(2)若圆P的圆心在直线xy0上,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥 底面为正方形,已知 ,点 为线段 上任意一点(不含端点),点 在线段 上,且

(1)求证:

(2)若 为线段 中点,求直线 与平面 所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市电力公司为了制定节电方案,需要了解居民用电情况,通过随机抽样,电力公司获得了户居民的月平均用电量,分为六组制出频率分布表和频率分布直方图(如图所示).

组号

分组

频数

频率

(1)求 的值;

(2)为了解用电量较大的用户用电情况,在第两组用分层抽样的方法选取户.

①求第两组各取多少户?

②若再从这户中随机选出户进行入户了解用电情况,求这户中至少有一户月平均用电量在范围内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列具有性质;对任意两数中至少有一个是该数列中的一项,给出下列三个结论:

①数列具有性质

②若数列具有性质,则

③若数列具有性质,则

其中,正确结论的个数是( ).

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经统计,某校学生上学路程所需要时间全部介于之间(单位:分钟).现从在校学生中随机抽取人,按上学所学时间分组如下:第,第,第,第,第,得打如图所示的频率分布直方图.

Ⅰ)根据图中数据求的值.

Ⅱ)若从第组中用分成抽样的方法抽取人参与交通安全问卷调查,应从这三组中各抽取几人?

Ⅲ)在(Ⅱ)的条件下,若从这人中随机抽取人参加交通安全宣传活动,求第组至少有人被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是异面直线,给出下列结论:

①一定存在平面,使直线平面,直线平面

②一定存在平面,使直线平面,直线平面

③一定存在无数个平面,使直线与平面交于一个定点,且直线平面.

则所有正确结论的序号为( )

A. ①② B. C. ②③ D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年位居民每人的月均用水量(单位:吨),将数据按照分成组,制成了如图所示的频率分布直方图.

(1)求直方图中的值;

(2)设该市有万居民,估计全市居民中月均用水量不低于吨的人数.说明理由;

(3)估计居民月均用水量的中位数.

查看答案和解析>>

同步练习册答案