精英家教网 > 高中数学 > 题目详情
13.已知F1、F2是双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,点M在E的渐近线上,且MF1与x轴垂直,sin∠MF2F1=$\frac{1}{3}$,则E的离心率为(  )
A.$\frac{\sqrt{6}}{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.2

分析 根据MF1与x轴垂直,sin∠MF2F1=$\frac{1}{3}$,得到tan∠MF2F1=$\frac{1}{2\sqrt{2}}$,MF1=$\frac{bc}{a}$,求解即可.

解答 解:∵MF1与x轴垂直,sin∠MF2F1=$\frac{1}{3}$,
∴tan∠MF2F1=$\frac{1}{2\sqrt{2}}$,MF1=$\frac{bc}{a}$
∴$\frac{\frac{bc}{a}}{2c}$=$\frac{1}{2\sqrt{2}}$,∴b=$\frac{\sqrt{2}}{2}$a
∴c=$\sqrt{{a}^{2}+\frac{1}{2}{a}^{2}}$=$\frac{\sqrt{6}}{2}$a,
∴e=$\frac{\sqrt{6}}{2}$
故选:A.

点评 本题主要考查双曲线离心率的计算,根据双曲线的定义结合直角三角形的勾股定理,结合双曲线离心率的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.双曲线$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{k}$=1的实轴长为8,离心率e∈(1,2),则k的取值范围是(  )
A.(-∞,0)B.(-48,0)C.(-192,0)D.(-60,-48)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.不等式$\frac{x+2}{x-1}$≤0的解集为(  )
A.{x|-2<x<1}B.{x|-2≤x<1}C.{x|-2≤x≤1}D.{x|-2<x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x,y满足$\left\{\begin{array}{l}{x-y≥0}\\{x+y-4≥0}\\{x≤4}\end{array}\right.$,则z=4x+y的最小值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\overrightarrow{a}$=(x,2),$\overrightarrow{b}$=(1,6),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知在数列{an}中,a1=1,an+1=2an+n-1,n∈N*
(1)证明:数列{an+n}是等比数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合M={0,2},则M的真子集的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在空间中,下列命题正确的是(  )
A.如果直线m∥平面α,直线n?α内,那么m∥n
B.如果平面α⊥平面β,任取直线m?α,那么必有m丄β
C.若直线m∥平面α,直线n∥平面α,则m∥n
D.如果平面a外的一条直线m垂直于平面a内的两条相交直线,那么m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)的图象和g(x)=ln(2x)的图象关于直线x-y=0对称,则f(x)的解析式为$\frac{1}{2}$ex

查看答案和解析>>

同步练习册答案