分析 (1)运用偶函数的图形关于y轴对称,可得$sin(θ+\frac{π}{3})=0$,求得θ,即可得到tanθ;再由同角的基本关系式,化为tanθ的式子,即可得到所求值;
(2)由题意可得$-2sin(θ+\frac{π}{3})≥1$或$-2sin(θ+\frac{π}{3})≤-\sqrt{3}$,结合正弦函数的图形和性质,计算即可得到所求范围.
解答 解:(1)∵函数f(x)是偶函数,∴$sin(θ+\frac{π}{3})=0$∴$θ+\frac{π}{3}=kπ(k=1,2)$(1分)
①tanθ=$tan(kπ-\frac{π}{3})(k=1,2)=tan(-\frac{π}{3})=-\sqrt{3}$(4分)
②$\sqrt{3}sinθ•cosθ+{cos^2}θ$=$\frac{{\sqrt{3}sinθ•cosθ+{{cos}^2}θ}}{{{{sin}^2}θ+{{cos}^2}θ}}=\frac{{\sqrt{3}tanθ+1}}{{{{tan}^2}θ+1}}=\frac{-3+1}{3+1}=-\frac{1}{2}$(7分)
(2)f(x)的对称轴为$x=-2sin(θ+\frac{π}{3})$,
$-2sin(θ+\frac{π}{3})≥1$或$-2sin(θ+\frac{π}{3})≤-\sqrt{3}$,
$sin(θ+\frac{π}{3})≤-\frac{1}{2}$或$sin(θ+\frac{π}{3})≥\frac{{\sqrt{3}}}{2}$(9分),
∵θ∈[0,2π),∴$θ+\frac{π}{3}∈[\frac{π}{3},\frac{7}{3}π)$,
∴$\frac{π}{3}≤θ+\frac{π}{3}≤\frac{2π}{3}$,∴$\frac{7π}{6}≤θ+\frac{π}{3}≤\frac{11π}{6}$,
∴$0≤θ≤\frac{π}{3}$,$\frac{5π}{6}≤θ≤\frac{3π}{2}$,
∴$θ∈[0,\frac{π}{3}]∪[\frac{5π}{6},\frac{3π}{2}]$(12分)
点评 本题考查函数的奇偶性和三角函数的求值,考查函数的单调性的判断和运用,以及运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 2+$\sqrt{2}$ | C. | 2+2$\sqrt{2}$ | D. | -2-2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | -2 | C. | $\frac{{2\sqrt{3}}}{3}$ | D. | $-\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com