精英家教网 > 高中数学 > 题目详情

(本小题满分12分)设数列的前项和为.已知
(Ⅰ)设,求数列的通项公式;
(Ⅱ)若,求的取值范围.

(Ⅰ).(Ⅱ)的取值范围是

解析试题分析:解:(Ⅰ)依题意,,即
由此得
因此,所求通项公式为
.……      4分
(Ⅱ)由①知
于是,当时,


,……      6分


时,
.                      ……  8分

综上,所求的的取值范围是.……10分
考点:等比数列的通项公式;最值。
点评:本题第一小题要应用到一般结论:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知是单调递增的等差数列,首项,前项和为,数列是等比数列,首项
(1)求的通项公式.
(2)设,数列的前项和为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列满足:
(1)求证:
(2)若,对任意的正整数恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知数列为等差数列,且
(1)求数列的通项公式;
(2)证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,点在函数的图象上,其中
(1)证明数列是等比数列;
(2)设,求及数列的通项;
(3)记,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)数列的前项和记为,且满足
(1)求数列的通项公式;
(2)求和
(3)设有项的数列是连续的正整数数列,并且满足:

问数列最多有几项?并求这些项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前n项和为Sn=2n2为等比数列,且
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知数列满足.
⑴求证:数列是等比数列,并写出数列的通项公式;
⑵若数列满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)在数列中,是数列项和,,当
(I)求证:数列是等差数列;
(II)设求数列的前项和
(III)是否存在自然数,使得对任意自然数,都有成立?若存在,求出的最大值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案