精英家教网 > 高中数学 > 题目详情
如图,三棱柱ABC-A1B1C1的所有棱长都是2,又AA1⊥平面ABC,D,E分别是AC,CC1的中点.

(1)求证:AE⊥平面A1BD.
(2)求二面角D-BA1-A的余弦值.
(3)求点B1到平面A1BD的距离.
(1)见解析  (2)   (3)
由AA1⊥平面ABC可知,平面ABC⊥平面ACC1A1,故可考虑建立空间直角坐标系解决问题.
解:(1)以D为原点,DA所在直线为x轴,过D作AC的垂线为y轴,DB所在直线为z轴建立空间直角坐标系如图,

则A(1,0,0),C(-1,0,0),E(-1,-1,0),A1(1,-2,0),C1(-1,-2,0),B(0,0,),B1(0,-2,),
=(-2,-1,0),=(-1,2,0),=(0,0,-).∴·=2-2+0=0,
∴AE⊥A1D,·=0,∴AE⊥BD.
又A1D与BD相交于D,∴AE⊥平面A1BD.
(2)设平面DA1B的一个法向量为n1=(x1,y1,z1),
取n1=(2,1,0).
设平面AA1B的一个法向量为n2=(x2,y2,z2),
易得=(-1,2,),=(0,2,0),
则由
取n2=(3,0,).cos<n1,n2>==.
故二面角D-BA1-A的余弦值为.
(3)=(0,2,0),平面A1BD的法向量取n1=(2,1,0),则点B1到平面A1BD的距离为d=||=.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在长方体ABCDA1B1C1D1中,,点E是棱AB上一点.且

(1)证明:
(2)若二面角D1ECD的大小为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、F分别是棱B1B、DA的中点.
(1)求二面角D1-AE-C的大小;
(2)求证:直线BF∥平面AD1E.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面是直角梯形,平面分别为的中点,

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在圆锥PO中,已知PO=,☉O的直径AB=2,C是的中点,D为AC的中点.

求证:平面POD⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四边形ABCD是菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCDGH分别是CECF的中点.

(1)求证:平面AEF∥平面BDGH
(2)若平面BDGH与平面ABCD所成的角为60°,求直线CF与平面BDGH所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在空间直角坐标系中,点与点的距离为               .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,M为DD1的中点,O为底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与直线AM所成的角是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设OABC是四面体,G1是△ABC的重心,G是OG1上一点,且OG=3GG1,若=x+y+z,则(x,y,z)为(  )
A.(,,)B.(,,)
C.(,,)D.(,,)

查看答案和解析>>

同步练习册答案