如图,椭圆的离心率为,是其左右顶点,是椭圆上位于轴两侧的点(点在轴上方),且四边形面积的最大值为4.
(1)求椭圆方程;
(2)设直线的斜率分别为,若,设△与△的面积分别为,求的最大值.
(1); (2)的最大值为.
解析试题分析:(1)由 2分,得,所以椭圆方程为; 4分
(2)设,设直线的方程为,代入得
, 5分
, , 7分
,,由得,
所以,所以, 8分
得,得,① 9分
,
, 10分
代入①得,得,或(是增根,舍去), 11分
所以 12分
所以,当时取到, 14分
所以,所以的最大值为. ` 15分
考点:椭圆的标准方程及几何性质,直线与椭圆的位置关系,三角形面积计算,最值的求法。
点评:中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题求椭圆标准方程时,主要运用了椭圆的几何性质,建立了a,bac的方程组。(2)作为研究三角形面积问题,应用韦达定理,建立了m的函数式,利用函数观点,求得面积之差的最大值,使问题得解。
科目:高中数学 来源: 题型:解答题
已知在直角坐标系中,曲线的参数方程为:(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的极坐标方程为:.
(Ⅰ)写出曲线和直线在直角坐标系下的方程;
(II)设点是曲线上的一个动点,求它到直线的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知、是椭圆的左、右焦点,且离心率,点为椭圆上的一个动点,的内切圆面积的最大值为.
(1) 求椭圆的方程;
(2) 若是椭圆上不重合的四个点,满足向量与共线,与共
线,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆(a>b>0)抛物线,从每条曲线上取两个点,将其坐标记录于下表中:
4 | 1 | |||
2 | 4 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆,是长轴的左、右端点,动点满足,联结,交椭圆于点.
(1)当,时,设,求的值;
(2)若为常数,探究满足的条件?并说明理由;
(3)直接写出为常数的一个不同于(2)结论类型的几何条件.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在原点,焦点在轴上.若椭圆上的点到焦点、的距离之和等于4.
(1)写出椭圆的方程和焦点坐标.
(2)过点的直线与椭圆交于两点、,当的面积取得最大值时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(1) 求抛物线的方程;
(2) 当点为直线上的定点时,求直线的方程;
(3) 当点在直线上移动时,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知是椭圆的左、右焦点,是椭圆上位于第一象限内的一点,点也在椭圆上,且满足(是坐标原点),,若椭圆的离心率为.
(1)若的面积等于,求椭圆的方程;
(2)设直线与(1)中的椭圆相交于不同的两点,已知点的坐标为(),点在线段的垂直平分线上,且,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com