精英家教网 > 高中数学 > 题目详情

在△ABC中,角A、B、C所对的边分别为a、b、c.若a=2bcosC,则△ABC的形状为________.

等腰三角形
分析:利用正弦定理以及三角形的内角和,两角和的正弦函数化简a=2bcosC,求出B与C的关系,即可判断三角形的形状.
解答:a=2bcosC,由正弦定理可知,sinA=2sinBcosC,因为A+B+C=π,
所以sin(B+C)=2sinBcosC,所以sinBcosC+cosBsinC=2sinBcosC,
sin(B-C)=0,B-C=Kπ,k∈Z,
因为A、B、C是三角形内角,
所以B=C.
三角形是等腰三角形.
故答案为:等腰三角形.
点评:本题考查正弦定理、三角形的内角和、两角和的正弦函数的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案