精英家教网 > 高中数学 > 题目详情
判断下列命题是全称命题还是存在性命题,并写出它们的否定:

(1)p:对任意的x∈R,x2+x+1=0都成立;

(2)p:?x∈R,x2+2x+5>0.

解析:(1)由于命题中含有全称量词“任意的”,因而是全称命题;又由于“任意的”的否定为“至少存在一个”,因此,
p:至少存在一个x∈R,使x2+x+1≠0成立;即px∈R,使x2+x+1≠0成立.

(2)由于“x∈R”表示至少存在实数中的一个x,即命题中含有存在量词“至少存在一个”,因而是存在性命题;又由于“存在一个”的否定为“任意一个”,因此,p:对任意一个x都有x2+2x+5≤0,即x∈R,x2+2x+5≤0.

温馨提示

首先弄清楚是全称命题还是存在性命题,再针对不同形式加以否定.从命题形式上看,全称命题的否定是存在性命题,存在性命题的否定是全称命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、判断下列命题是全称命题还是特称命题,并判断其真假.
(1)对数函数都是单调函数;
(2)至少有一个整数,它既能被2整除,又能被5整除;
(3)?x0∈{x|x∈R},log2x0>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列命题是全称命题还是特称命题,写出这些命题的否定,并说出这些否定的真假,不必证明.
(Ⅰ)存在实数x,使得x2+2x+3<0;
(Ⅱ)有些三角形是等边三角形;
(Ⅲ)方程x2-8x-10=0的每一个根都不是奇数.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列命题是全称命题还是存在性命题,并写出它们的否定:
(1)p:对任意的x∈R,x2+x+1=0都成立;
(2)p:?x∈R,x2+2x+5>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列命题是全称命题还是特称命题,写出这些命题的否定,并说出这些否定的真假,不必证明.
(1)末尾数是偶数的数能被4整除;
(2)对任意实数x,都有x2-2x-3<0;
(3)方程x2-5x-6=0有一个根是奇数.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列命题是全称命题还是特称命题,并判断其真假.
(1)a>0,且a≠1,则对任意实数x,ax>0;
(2)对任意实数x1,x2,若x1<x2,则tanx1<tanx2
(3)?T0∈R,使|sin(x+T0)|=|sinx|;
(4)?x0∈R,使x\o\al(2,0)+1<0.

查看答案和解析>>

同步练习册答案