精英家教网 > 高中数学 > 题目详情
已知曲线C1,C2的极坐标方程分别为ρ=2sinθ,ρcosθ+ρsinθ+1=0,则曲线C1上的点与曲线C2上的点的最近距离为
 
考点:简单曲线的极坐标方程
专题:选作题,坐标系和参数方程
分析:把极坐标方程化为直角坐标方程,求出圆心到直线的距离为d,再把d减去半径,即为所求.
解答: 解:由于曲线C1、C2的极坐标方程分别为ρ=2sinθ,ρcosθ+ρsinθ+1=0,
则它们的直角坐标方程分别为 x2+(y-1)2=1,x+y+1=0.
曲线C1上表示一个半径为1的圆,圆心为(0,1),
曲线C2表示一条直线,圆心到直线的距离为d=
|0+1+1|
2
=
2

故曲线C1上的点与曲线C2上的点的最近距离为
2
-1,
故答案为:
2
-1.
点评:本题主要考查把极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{bn}的通项公式为bn=n•qn-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,|
AB
|=2,|
AC
|=3,且△ABC的面积为
3
2
,则∠BAC=(  )
A、150°
B、120°
C、60°或120°
D、30°或150°

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|x-1|(2x-1)≥0的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,直线l过点(1,0)且与直线θ=
π
3
(ρ∈R)垂直,则直线l极坐标方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,某三棱锥的三视图均为边长为1的正方形,则该三棱锥的体积是(  )
A、
2
12
B、
2
6
C、
1
3
D、
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x|x-a|+2x,若存在a∈[0,4],使得关于x的方程f(x)=tf(a)有三个不相等的实数根,则实数t的取值范围是(  )
A、(1,
9
8
B、(1,
3
2
C、(
9
8
3
2
D、(1,
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式|x+3|+|x-7|≥a2-3a的解集为R,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示框图,则输出S的值为(  )
A、
1
8
B、-
1
8
C、
3
8
D、-
3
8

查看答案和解析>>

同步练习册答案