精英家教网 > 高中数学 > 题目详情

【题目】2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为

(Ⅰ)确定 的值;

(Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.

①请将列联表补充完整;

网龄3年以上

网龄不足3年

合计

购物金额在2000元以上

35

购物金额在2000元以下

20

合计

100

②并据此列联表判断,是否有%的把握认为网购金额超过2000元与网龄在三年以上有关?

参考数据:

(参考公式: ,其中

【答案】(Ⅰ) ;(Ⅱ)见解析.

【解析】试题分析:(Ⅰ)由网购金额在2000元以上(不含2000元)的频率为,得,进而根据表格的每一列总数可求解;

(Ⅱ)①根据题中提供数据一次填入表格即可;

②由数据可得列联表,利用公式,可得结论.

试题解析:

(Ⅰ)因为网购金额在2000元以上的频率为

所以网购金额在2000元以上的人数为100=40

所以,所以

所以.

(Ⅱ)由题设列联表如下

网龄3年以上

网龄不足3年

合计

购物金额在2000元以上

35

5

40

购物金额在2000元以下

40

20

60

合计

75

25

100

所以=.

因为

所以据此列联表判断,有%的把握认为网购金额超过2000元与网龄在三年以上有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:函数 在(﹣∞,+∞)上有极值,命题q:双曲线 的离心率e∈(1,2).若p∨q是真命题,p∧q是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=﹣ x3+ x2+2ax.
(1)当a=1时,求f(x)在[1,4]上的最大值和最小值.
(2)若f (x)在( ,+∞)上存在单调递增区间,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三角形的顶点分别为A(﹣1,3),B(3,2),C(1,0)
(1)求BC边上高的长度;
(2)若直线l过点C,且在l上不存在到A,B两点的距离相等的点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为抛物线的焦点,点在抛物线上,且

(1)求抛物线的方程;

(2)已知点,延长交抛物线于点,证明:以点为圆心且与直线相切的圆,必与直线相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了解学校食堂的服务情况,随机调查了50名就餐的教师和学生.根据这50名师生对餐厅服务质量进行评分,绘制出了频率分布直方图(如图所示),其中样本数据分组为[40,50),[50,60),…,[90,100].
(1)求频率分布直方图中a的值;
(2)从评分在[40,60)的师生中,随机抽取2人,求此人中恰好有1人评分在[40,50)上的概率;
(3)学校规定:师生对食堂服务质量的评分不得低于75分,否则将进行内部整顿,试用组中数据估计该校师生对食堂服务质量评分的平均分,并据此回答食堂是否需要进行内部整顿.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,左顶点为,左焦点为,点在椭圆上,直线与椭圆交于 两点,直线 分别与轴交于点

(Ⅰ)求椭圆的方程;

(Ⅱ)以为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左右焦点分别是,直线与椭圆交于两点,当时, 恰为椭圆的上顶点,此时的面积为6.

(1)求椭圆的方程;

2)设椭圆的左顶点为,直线与直线分别相交于点,问当变化时,以线段为直径的圆被轴截得的弦长是否为定值?若是,求出这个定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)求证:当a>2时, + <2 ; (Ⅱ)证明:2, ,5不可能是同一个等差数列中的三项.

查看答案和解析>>

同步练习册答案