精英家教网 > 高中数学 > 题目详情
16.已知函数$f(x)=cosx+{2^x}-\frac{1}{2}(x<0)$与g(x)=cosx+log2(x+a)图象上存在关于y轴对称的点,则a的取值范围是(  )
A.$(-∞,-\sqrt{2})$B.$(-∞,-\frac{{\sqrt{2}}}{2})$C.$(-\sqrt{2},\frac{{\sqrt{2}}}{2})$D.$(-∞,\sqrt{2})$

分析 根据题意分析可得若函数$f(x)=cosx+{2^x}-\frac{1}{2}(x<0)$与g(x)=cosx+log2(x+a)图象上存在关于y轴对称的点,则转化为函数f1(x)=2x-$\frac{1}{2}$(x<0)与g′(x)=log2(x+a)的图象上存在关于y轴对称的点,结合函数图象和图象平移的性质,分析得到答案.

解答 解:由题意可得:函数$f(x)=cosx+{2^x}-\frac{1}{2}(x<0)$
与g(x)=cosx+log2(x+a)图象上存在关于y轴对称的点,
则转化为函数f1(x)=2x-$\frac{1}{2}$(x<0)与g′(x)=log2(x+a)的图象上存在关于y轴对称的点,
f1(x)=2x-$\frac{1}{2}$(x<0)只需将y=2x的图象向下平移$\frac{1}{2}$,
g1(x)=log2(x+a)需要将y=log2x的图象向左或右平移|a|,
分析可得,a<$\sqrt{2}$,
故a的取值范围是(-∞,$\sqrt{2}$),
故选D.

点评 本题考查的知识点是函数的图象和性质,函数的零点,函数单调性的性质,函数的极限,是函数图象和性质较为综合的应用,难度大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.某厂家举行大型的促销活动,经测算某产品当促销费用为x万元时,销售量t万件满足t=5-$\frac{9}{2(x+1)}$(其中0≤x≤a,a为正常数).现假定生产量与销售量相等,已知生产该产品t万件还需投入成本(10+2t)万元(不含促销费用),产品的销售价格定为(4+$\frac{20}{t}$)万元/万件.
(I)将该产品的利润y万元表示为促销费用x万元的函数;
(II)促销费用投入多少万元时,厂家的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知四棱锥P-ABCD,底面ABCD是∠A=60°、边长为a的菱形,又PD⊥底面 ABCD,且PD=CD,点M、N分别是棱AD、PC的中点.
(1)证明:DN∥平面PMB;
(2)证明:平面PMB⊥平面PAD;
(3)直线PB与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图1,在梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC=2BC=4,O是边AB的中点,将三角形AOD饶边OD所在直线旋转到A,OD位置,使得∠A,OB=120°,如图2,设m为平面A1DC与平面A1OB的交线.

(1)判断直线DC与直线m的位置关系并证明;
(2)若在直线m上的点G满足OG⊥A1D,求出A1G的长;
(3)求直线A1O与平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.我国古代数典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”上述问题中,两鼠在第几天相逢.(  )
A.3B.4C.5D.6、

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=$\left\{\begin{array}{l}{x-\frac{3}{x},x>0}\\{{x}^{2}-\frac{1}{4},x≤0}\end{array}\right.$,则方程f(x)=2的所有实数根之和为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABD和△BCD是两个直角三角形,∠BAD=∠BDC=$\frac{π}{2}$,E、F分别是边AB、AD的中点,现将△ABD沿BD边折起到A1BD的位置,如图所示,使平面A1BD⊥平面BCD.
  (Ⅰ)求证:EF∥平面BCD;
(Ⅱ)求证:平面A1BC⊥平QUOTE A1BC⊥面A1CD;
(Ⅲ)请你判断,A1C与BD是否有可能垂直,做出判断并写明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知Rt△ABC的周长为定值l,则它的面积最大值为$\frac{3-2\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=Asin(ωx+φ)+m(A>0,ω>0,|φ|<$\frac{π}{2}$)最小正周期为$\frac{π}{2}$,最大值为4,最小值为0,图象的一条对称轴为x=$\frac{π}{3}$
(1)求函数f(x)的解析式
(2)求函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案