精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x)满足f(x+1)=-f(x),当x∈[-1,1]时,f(x)=x2,函数g(x)=
loga(x-1)x>1
2xx≤1
,若函数h(x)=f(x)-g(x)在区间[-5,5]上恰有8个零点,则a的取值范围为
(  )
A、(2,4)
B、(2,5)
C、(1,5)
D、(1,4)
考点:函数零点的判定定理
专题:计算题,作图题,函数的性质及应用
分析:函数h(x)=f(x)-g(x)在区间[-5,5]上恰有8个零点即函数f(x)与函数g(x)在区间[-5,5]上有8个交点,从而作图求解.
解答: 解:函数h(x)=f(x)-g(x)在区间[-5,5]上恰有8个零点即
函数f(x)与函数g(x)在区间[-5,5]上有8个交点,
由f(x+1)=-f(x)=f(x-1)知,
f(x)是R上周期为2的函数,
作函数f(x)与函数g(x)在区间[-5,5]上的图象如下,

由图象知,当x∈[-5,1]时,图象有5个交点,故在[1,5]上有3个交点即可;
loga(3-1)<1
loga(5-1)>1

解得,2<a<4;
故选A.
点评:本题考查了函数的零点与图象的关系应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinx•cosx+cos2x-sin2x-1(x∈R)
(1)求函数y=f(x)的单调递增区间;
(2)若x∈[-
π
6
π
3
],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆上不相同九点,两点连成线段,线段在圆内交点的最多个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2+mx+m+n=0的两根分别为椭圆和双曲线的离心率.记分别以m,n为横、纵坐标的点A(m,n)表示的平面区域D.若函数y=loga(x+4)(a>1)的图象上存在区域D内的点,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

记等差数列{an}得前n项和为Sn,利用倒序相加法的求和办法,可将Sn表示成首项a1,末项an与项数的一个关系式,即Sn=
(a1+an)n
2
;类似地,记等比数列{bn}的前n项积为Tn,bn>0(n∈N*),类比等差数列的求和方法,可将Tn表示为首项b1,末项bn与项数的一个关系式,即公式Tn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到A1DE的位置,使A2C⊥CD,如图2.
(1)求证:A1C⊥平面BCDE;
(2)若M是A1D的中点,求CM与平面A1BE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个正方体的平面展开图,则在正方体中,①CN与BE是异面直线;②平面DEM∥平面ACF;③DE⊥BM; ④AF与BM所成角为60°;⑤BN⊥平面AFC,在以上的五个结论中,正确的是
 
(写出所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

某校举行演讲比赛,9位评委给选手A打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若统计员计算无误,则数字x应该是(  )
A、5B、4C、3D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

最近,张师傅和李师傅要将家中闲置资金进行投资理财.现有两种投资方案,且一年后投资盈亏的情况如下:
(1)投资股市:
投资结果获利不赔不赚亏损
概  率
1
2
1
8
3
8
(2)购买基金:
投资结果获利不赔不赚亏损
概  率p
1
3
q
(Ⅰ)当p=
1
2
时,求q的值;
(Ⅱ)已知“购买基金”亏损的概率比“投资股市”亏损的概率小,求p的取值范围;
(Ⅲ)已知张师傅和李师傅两人都选择了“购买基金”来进行投资,假设三种投资结果出现的可能性相同,求一年后他们两人中至少有一人获利的概率.

查看答案和解析>>

同步练习册答案