精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥S—ABCD的底面是正方形,侧棱SA⊥底面ABCD,

过A作AE垂直SB交SB于E点,作AH垂直SD交SD于H点,平面AEH交SC于K点,且AB=1,SA=2.

(1)证明E、H在以AK为直径的圆上,且当点P是SA上任一点时,试求的最小值;

(2)求平面AEKH与平面ABCD所成的锐二面角的余弦值.

【答案】(1)见解析;(2)

【解析】

(1)将侧面绕侧棱旋转到与侧面在同一平面内,当三点共线时,取最小值,这时,的最小值即线段的长,由此能求出结果;

(2)以A为原点,分别以AB、AD、AS所在的直线为x、y、z轴,建立空间直角坐标系,利用向量法能求出平面AEKH与平面ABCD所成锐二面角的余弦值.

(1)∵SA⊥底面ABCD,∴SA⊥BC,又AB⊥BC,

∴BC⊥平面SAB,又平面SAB,∴EA⊥BC,又∵AE⊥SB,∴AE⊥平面SBC ,

平面SBC,∴EA⊥EK, 同理 AH⊥KH,

∴E、H在以AK为直径的圆上

现将侧面SAB绕侧棱SA旋转到与侧面SAD在同一平面内,如右图示,

则当B、P、H三点共线时,取最小值,这时,

最小值即线段BH的长,设,则

中,,∴,

在三角形BAH中,有余弦定理得:

.

(2)以A为原点,分别以AB、AD、AS所在的直线为x、y、z轴,建立空间直角坐标系,则S(0,0,2),C(1,1,0),由(1)可得AE⊥SC,AH⊥SC,

∴SC⊥平面AEKH,为平面AEKH的一个法向量,

为平面ABCDF的一个法向量,设平面AEKH与平面ABCD所成的锐二面角的平面角为,则

平面AEKH与平面ABCD所成的锐二面角的余弦值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对心肺疾病入院的人进行问卷调查,得到了如下的列联表:

患心肺疾病

不患心肺疾病

合计

A

合计

B

(1)根据已知条件求出上面的列联表中的A和B;用分层抽样的方法在患心肺疾病的人群中抽人,其中男性抽多少人?

(2)为了研究心肺疾病是否与性别有关,请计算出统计量,并说明是否有的把握认为心肺疾病与性别有关?

下面的临界值表供参考:

参考公式: ,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣1)2+y2=r2(r>0)与直线l:y=x+3,且直线l有唯一的一个点P,使得过P点作圆C的两条切线互相垂直,则r=;设EF是直线l上的一条线段,若对于圆C上的任意一点Q,∠EQF≥ ,则|EF|的最小值=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学期开展覆盖本校各年级学生的《标准》测试工作,并根据学生每个学期总分评定等级.某校决定针对高中学生,每学期进行一次体质健康测试,以下是小明同学六个学期体质健康测试的总分情况.

学期

1

2

3

4

5

6

总分(分)

512

518

523

528

534

535

(1)请根据上表提供的数据,用相关系数说明的线性相关程度,并用最小二乘法求出关于的线性回归方程(线性相关系数保留两位小数);

(2)在第六个学期测试中学校根据 《标准》,划定540分以上为优秀等级,已知小明所在的学习小组10个同学有6个被评定为优秀,测试后同学们都知道了自己的总分但不知道别人的总分,小明随机的给小组内4个同学打电话询问对方成绩,优秀的同学有人,求的分布列和期望.

参考公式:

相关系数

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域,值域是定义域,值域是,其中实数满足.

甲:如果任意,存在,使得,那么

乙:如果存在,存在,使得,那么

丙:如果任意,任意,使得,那么

丁:如果存在,任意,使得,那么

请判断上述四个命题中,假命题的个数是( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2006表示成5个正整数之和. 记. 问:

(1)取何值时,S取到最大值;

(2)进一步地,对任意,当取何值时,S取到最小值. 说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数上为增函数,求正实数的取值范围;

(2)当时,求函数上的最值;

(3)当时,对大于1的任意正整数,试比较的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的命题是( )

A.若存在,当时,有,则说函数在区间上是增函数:

B.若存在),当时,有,则说函数在区间上是增函数;

C.函数的定义域为,若对任意的,都有,则函数上一定是减函数:

D.若对任意,当时,有,则说函数在区间上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a(x﹣1)2+lnx+1,g(x)=f(x)﹣x,其中a∈R.
(Ⅰ)当a=﹣ 时,求函数f(x)的极值;
(Ⅱ)当a>0时,求函数g(x)的单调区间;
(Ⅲ)当x∈[1,+∞)时,若y=f(x)图象上的点都在 所表示的平面区域内,求实数a的取值范围.

查看答案和解析>>

同步练习册答案