精英家教网 > 高中数学 > 题目详情
2.若关于x的方程4x-(a+3)2x+1=0有实数解,则实数a的取值范围是[-1,+∞).

分析 分离变量,然后利用基本不等式求解表达式的最值,即可求出a的范围.

解答 解:关于x的方程4x-(a+3)2x+1=0有实数解,即a+3=2x+$\frac{1}{{2}^{x}}$≥2$\sqrt{{2}^{x}•\frac{1}{{2}^{x}}}$=2,当且仅当x=0时取等号.
∴a≥-1,
所以a的范围为[-1,+∞)
故答案为:[-1,+∞).

点评 本题考查指数函数的定义、基本不等式求最值问题,同时考查转化思想,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知圆P的半径等于椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1的长轴长,圆心是抛物线y2=4$\sqrt{2}$x的焦点,经过点M(-$\sqrt{2}$,1)的直线1将圆P分成两段弧,则劣弧长度的最小值为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知A={x|2x>1},B={x|-1<x<1}.
(1)求A∪B及(∁RA)∩B;
(2)若集合C={x|x<a},满足B∪C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知角α的终边上一点$P({-\sqrt{3},m})$,且$sinα=\frac{{\sqrt{2}}}{4}m$,则tanα的值为±1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设x>0,则$x\sqrt{1-4{x^2}}$得最大值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=lg\frac{1-x}{x+1}$
(1)求函数f(x)的定义域.
(2)若函数f(x)<0,求x得取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx-mx(m∈R),g(x)=2f(x)+x2,h(x)=lnx-cx2-bx.
(1)求函数f(x)的单调区间;
(2)当$m≥\frac{{3\sqrt{2}}}{2}$时,g(x)的两个极值点为x1,x2(x1<x2).
①证明:$0<\frac{x_1}{x_2}≤\frac{1}{2}$;
②若x1,x2恰为h(x)的零点,求$y=({x_1}-{x_2})h'(\frac{{{x_1}+{x_2}}}{2})$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示的程序框图,输出的值为(  )
A.$\frac{15}{16}$B.$\frac{15}{12}$C.$\frac{13}{8}$D.$\frac{13}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=3cos(ωx+\frac{π}{3})(ω>0)$和g(x)=2sin(2x+φ)+1的图象的对称轴完全相同,若$x∈[0,\frac{π}{3}]$,则f(x)的取值范围是(  )
A.[-3,3]B.$[-\frac{3}{2},3]$C.$[-3,\frac{{3\sqrt{3}}}{2}]$D.$[-3,\frac{3}{2}]$

查看答案和解析>>

同步练习册答案