精英家教网 > 高中数学 > 题目详情
11.设a是实数,且$\frac{2a}{1+i}$+1+i是实数,则a=(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.-1

分析 直接由复数代数形式的乘除运算化简$\frac{2a}{1+i}$+1+i,再结合已知条件计算得答案.

解答 解:∵$\frac{2a}{1+i}$+1+i=$\frac{2a(1-i)}{(1+i)(1-i)}+1+i=a+1+(1-a)i$是实数,
∴1-a=0,解得a=1.
故选:B.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(3,4),则$\overrightarrow{a}$与$\overrightarrow{b}$夹角的余弦值(  )
A.$-\frac{{2\sqrt{5}}}{25}$B.$\frac{{2\sqrt{5}}}{25}$C.$2\sqrt{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=e|x|+x2,若实数a满足f(log2a)≤f(1),则a的取值范围是(  )
A.(0,1]B.[$\frac{1}{2}$,2]C.(0,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知B=C,2sinA=3sinB.
(Ⅰ)求cosA;
(Ⅱ)求cos(2A-$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若直线2ax-by+2=0(a>0,b>0),经过圆x2+y2+2x-4y+1=0的圆心,则$\frac{1}{a}+\frac{1}{b}$的最小值是(  )
A.$\frac{1}{2}$B.2C.$\frac{1}{4}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.质地均匀的正四面体玩具的4个面上分别刻着数字1,2,3,4,将4个这样的玩具同时抛掷于桌面上.
(1)求与桌面接触的4个面上的4个数的乘积为偶数且不能被4整除的概率;
(2)设ξ为与桌面接触的4个面上数字中偶数的个数,求ξ的分布列及期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数$f(x)=\frac{x}{2x-1}$,则$f(\frac{1}{4011})+f(\frac{2}{4011})+f(\frac{3}{4011})+…+f(\frac{4010}{4011})$=2005.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,D是直角△ABC斜边BC上一点,$AC=\sqrt{2}DC$.
(Ⅰ)若BD=2DC=2,求AD;
(Ⅱ)若AB=AD,求:sinB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在四棱锥中P-ABCD,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA=PD=$\sqrt{2}$,PA⊥PD,E,F分别为PC,BD的中点.
(Ⅰ)求证:EF||平面PAD;
(Ⅱ)求三棱锥P-CDF的体积.

查看答案和解析>>

同步练习册答案