精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(1)讨论函数的单调性;

(2)若函数恰有两个零点,求的取值范围.

【答案】(1)见解析;(2)

【解析】

1,讨论a,求得单调性即可(2)利用(1)的分类讨论,研究函数最值,确定零点个数即可求解

1)因为,其定义域为

所以.

①当时,令,得;令,得

此时上单调递减,在上单调递增.

②当时,令,得;令,得

此时上单调递减,在上单调递增.

③当时,,此时上单调递减.

④当时,令,得;令,得

此时上单调递减,在上单调递增.

2)由(1)可知:①当时,.

易证,所以.

因为

.

所以恰有两个不同的零点,只需,解得.

②当时,,不符合题意.

③当时,上单调递减,不符合题意.

④当时,由于上单调递减,在上单调递增,且,又,由于

所以,函数最多只有1个零点,与题意不符.

综上可知,,即的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”, 《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员“礼让斑马线”行为统计数据:

月份

1

2

3

4

5

违章驾驶员人数

120

105

100

90

85

(1)请利用所给数据求违章人数与月份之间的回归直线方程

(2)预测该路口9月份的不“礼让斑马线”违章驾驶员人数.

参考公式: .

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点恰好是椭圆的右焦点.

1)求实数的值及抛物线的准线方程;

2)过点任作两条互相垂直的直线分别交抛物线点,求两条弦的弦长之和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平顶山市公安局交警支队依据《中华人民共和国道路交通安全法》第条规定:所有主干道路凡机动车途经十字口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以元罚款,记分的行政处罚.如表是本市一主干路段监控设备所抓拍的个月内,机动车驾驶员不“礼让斑马线”行为统计数据:

月份

违章驾驶员人数

(Ⅰ)请利用所给数据求违章人数与月份之间的回归直线方程

(Ⅱ)预测该路段月份的不“礼让斑马线”违章驾驶员人数.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当)的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:

(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?

(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若数列满足,存在实数,对任意,都有,则称数列有上界,是数列的一个上界,已知定理:单调递增有上界的数列收敛(即极限存在).

(1)数列是否存在上界?若存在,试求其所有上界中的最小值;若不存在,请说明理由;

(2)若非负数列满足),求证:1是非负数列的一个上界,且数列的极限存在,并求其极限;

(3)若正项递增数列无上界,证明:存在,当时,恒有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果,已知正方形的边长为2,平行轴,顶点分别在函数的图像上,则实数的值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,把作为新数列的第一项,把)作为新数列的第项,数列称为数列的一个生成数列.例如,数列的一个生成数列是.已知数列为数列的生成数列,为数列的前项和.

1)写出的所有可能值;

2)若生成数列满足,求数列的通项公式;

3)证明:对于给定的的所有可能值组成的集合为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若椭圆C1 和椭圆C2 的焦点相同且a1>a2.给出如下四个结论:

①椭圆C1和椭圆C2一定没有公共点;

a1a2<b1b2.

其中,所有正确结论的序号是(  )

A. ②③④ B. ①③④

C. ①②④ D. ①②③

查看答案和解析>>

同步练习册答案