【题目】已知等比数列的前n项和为,且当时,是与2m的等差中项为实数.
(1)求m的值及数列的通项公式;
(2)令,是否存在正整数k,使得对任意正整数n均成立?若存在,求出k的最大值;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】已知一个口袋有m个白球,n个黑球(m,n ,n 2),这些球除颜色外全部相同。现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,……,m+n的抽屉内,其中第k次取球放入编号为k的抽屉(k=1,2,3,……,m+n).
(1)试求编号为2的抽屉内放的是黑球的概率p;
(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(x)是x的数学期望,证明
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记是定义在上且满足如下条件的函数组成的集合:
①对任意的,都有;
②存在常数,使得对任意的、,都有.
(1)设函数,,判断函数是否属于?并说明理由;
(2)已知函数,求证:方程的解至多一个;
(3)设函数,,且,试求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,且的图像连续不间断,若函数满足:对于给定的实数且,存在,使得,则称具有性质.
(1)已知函数,判断是否具有性质,并说明理由;
(2)求证:任取,函数,具有性质;
(3)已知函数,,若具有性质,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)阅读以下案例,利用此案例的想法化简.
案例:考察恒等式左右两边的系数.
因为右边,
所以,右边的系数为,
而左边的系数为,
所以=.
(2)求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,圆C1和C2的参数方程分别是(φ为参数)和(φ为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求圆C1和C2的极坐标方程;
(2)射线OM:θ=a与圆C1的交点为O、P,与圆C2的交点为O、Q,求|OP||OQ|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是椭圆的两个焦点,是椭圆上一点,当时,有.
(1)求椭圆的标准方程;
(2)设过椭圆右焦点的动直线与椭圆交于两点,试问在铀上是否存在与不重合的定点,使得恒成立?若存在,求出定点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知变量、之间的线性回归方程为,且变量、之间的一-组相关数据如下表所示,则下列说法错误的是( )
A.可以预测,当时,B.
C.变量之间呈负相关关系D.该回归直线必过点
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com