精英家教网 > 高中数学 > 题目详情
精英家教网如图所示,点P是函数y=2sin(ωx+φ)(x∈R,ω>0)的图象的最高点,M、N是图象与x轴的交点,若
PM
PN
=0
,则ω=(  )
A、8
B、
π
8
C、
π
4
D、
π
2
分析:首先判定△MPN为等腰直角三角形,然后通过它的性质求出MN的长度,再求出周期T,进而求得ω.
解答:解:因为
PM
PN
=0,所以
PM
PN

则△MPN是等腰直角三角形,
又点P到MN的距离为2,所以MN=2×2=4,
则周期T=2×4=8,所以ω=
T
=
π
4

故选C.
点评:本题主要考查正弦型函数的轴对称性及直角三角形的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,点P是函数y=2sin(ωx+φ)(x∈R,ω>0)图象的最高点,M、N是图象与x轴的交点,若
PM
PN
=0,则ω=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广元二模)如图所示,点P是函数y=2sin(ωx+φ)(x∈R,ω>0)的图象的最高点,M、N是图象与x轴的交点,若
PM
PN
=0,则ω
=(  )

查看答案和解析>>

科目:高中数学 来源:2013年四川省广元市高考数学二模试卷(理科)(解析版) 题型:选择题

如图所示,点P是函数y=2sin(ωx+φ)(x∈R,ω>0)的图象的最高点,M、N是图象与x轴的交点,若=( )

A.
B.
C.
D.8

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省铁岭市六校协作高三第三次联考数学试卷(理科)(解析版) 题型:选择题

如图所示,点P是函数y=2sin(ωx+φ)(x∈R,ω>0)的图象的最高点,M、N是图象与x轴的交点,若,则ω=( )

A.8
B.
C.
D.

查看答案和解析>>

同步练习册答案