精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的左、右焦点分别为,左项点为上顶点为.已知.

1)求椭圆的离心率;

2)设为椭圆上在第一象限内一点,射线与椭圆的另一个公共点为,满足,直线轴于点,的面积为.

(i)求椭圆的方程.

(ii)过点作不与轴垂直的直线交椭圆(异于点)两点,试判断的大小是否为定值,并说明理由.

【答案】1;(2)(i) (ii) 是定值,证明见解析.

【解析】

1)根据,得到之间的关系,从而得到离心率;(2)(i)设椭圆方程为,根据,得到,代入椭圆方程得,从而得到直线的方程和点坐标,表示出的面积,解出,得到椭圆方程;(ii) 设直线的方程为: ,与椭圆联立得到,对进行计算化简,从而得到,是定值.

1,则

因为

所以

解得

所以.

2)(i)由(1,即

设椭圆的标准方程为.

由题意设,所以

,易知

所以,得

代入椭圆方程得

所以

所以,直线

所以

所以

解得

所以椭圆的方程为

(ii)显然点在椭圆内部,直线的斜率存在且不为.

设直线的方程为:

联立方程,化简得

,则

所以是定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取个,利用水果的等级分类标准得到的数据如下:

等级

标准果

优质果

精品果

礼品果

个数

10

30

40

20

(1)若将频率是为概率,从这个水果中有放回地随机抽取个,求恰好有个水果是礼品果的概率.(结果用分数表示)

(2)用样本估计总体,果园老板提出两种购销方案给采购商参考.

方案:不分类卖出,单价为.

方案:分类卖出,分类后的水果售价如下:

等级

标准果

优质果

精品果

礼品果

售价(元/kg)

16

18

22

24

从采购单的角度考虑,应该采用哪种方案?

(3)用分层抽样的方法从这个水果中抽取个,再从抽取的个水果中随机抽取个,表示抽取的是精品果的数量,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.

1)设,判断上是否为有界函数,若是,请说明理由,并写出的所有上界的集合;若不是,也请说明理由;

2)若函数上是以为上界的有界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C.

1)求椭圆C的离心率;

2)设分别为椭圆C的左右顶点,点P在椭圆C上,直线AP,BP分别与直线相交于点M,N.当点P运动时,以M,N为直径的圆是否经过轴上的定点?试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)设椭圆与双曲线有相同的焦点是椭圆与双曲线的公共点,且△的周长为6,求椭圆的方程;我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为盾圆

2)如图,已知盾圆的方程为,设盾圆上的任意一点的距离为到直线的距离为,求证:为定值;

3)由抛物线弧)与第(1)小题椭圆弧)所合成的封闭曲线为盾圆,设过点的直线与盾圆交于两点,,且),试用表示,并求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张,为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少05万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.

1)记2013年为第一年,每年发放的燃油型汽车牌照数量构成数列,每年发放电动型汽车牌照数为构成数列,完成下列表格,并写出这两个数列的通项公式;

2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?











查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是数列的前项和,对任意,都有

1)若,求证:数列是等差数列,并求此时数列的通项公式;

2)若,求证:数列是等比数列,并求此时数列的通项公式;

3)设,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】互联网+”智慧城市的重要内容,A市在智慧城市的建设中,为方便市民使用互联网,在主城区覆盖了免费WiFi为了解免费WiFiA市的使用情况,调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到如下列联表(单位:人):

经常使用免费WiFi

偶尔或不用免费WiFi

合计

45岁及以下

70

30

100

45岁以上

60

40

100

合计

130

70

200

1)根据以上数据,判断是否有90%的把握认为A市使用免费WiFi的情况与年龄有关;

2)将频率视为概率,现从该市45岁以上的市民中用随机抽样的方法每次抽取1人,共抽取3.记被抽取的3人中偶尔或不用免费WiFi的人数为X,若每次抽取的结果是相互独立的,求X的分布列,数学期望EX)和方差DX.附:,其中.

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生自主学习期间完成数学套卷的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.

1)从这班学生中任选一名男生,一名女生,求这两名学生完成套卷数之和为4的概率?

2)若从完成套卷数不少于4套的学生中任选4人,设选到的男学生人数为,求随机变量的分布列和数学期望;

3)试判断男学生完成套卷数的方差与女学生完成套卷数的方差的大小(只需写出结论).

查看答案和解析>>

同步练习册答案