精英家教网 > 高中数学 > 题目详情
命题甲:f(x)是 R上的单调递增函数;命题乙:?x1<x2,f(x1)<f(x2).则甲是乙的(  )
A、充分不必要条件B、必要不充分条件C、充分且必要条件D、既不充分也不必要条件
分析:根据函数单调性的定义和性质,利用充分条件和必要条件的定义进行判断.
解答:解:根据函数单调性的定义可知,若f(x)是 R上的单调递增函数,则?x1<x2,f(x1)<f(x2)成立,∴命题乙成立.
若:?x1<x2,f(x1)<f(x2).则不满足函数单调性定义的任意性,∴命题甲不成立.
∴甲是乙成立的充分不必要条件.
故选:A.
点评:本题主要考查充分条件和必要条件的判断,利用函数单调性的定义和性质是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、对于函数①f(x)=lg(|x-2|+1),②f(x)=(x-2)2,③f(x)=cos(x+2),判断如下三个命题的真假:
命题甲:f(x+2)是偶函数;
命题乙:f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数;
命题丙:f(x+2)-f(x)在(-∞,+∞)上是增函数.
能使命题甲、乙、丙均为真的所有函数的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

12、对于函数 ①f(x)=lg(|x-2|+1),②f(x)=(x-2)2,③f(x)=cos(x+2).给出如下三个命题:
命题甲:f(x+2)是偶函数;
命题乙:f(x)在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数;
命题丙:f(x+2)-f(x)在(-∞,+∞)上是增函数.
能使命题甲、乙、丙均为真的所有函数的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

A 任意a,b∈R,定义运算a*b=
ab,ab≤0
-
a
b
,ab>0
,则f(x)=x*lnx的最大值为
0
0

B 对于函数①f(x)=4x+
1
x
-5;②f(x)=|log2x|-(
1
2
)
x
;③f(x)=cos(x+2)-cosx;
命题甲:f(x)在区间(1,2)上是增函数;
命题乙:f(x)在区间(0,+∞)上恰有两个零点x1,x2,且x1x2<1.
能使命题甲、乙均为真命题的函数序号是
①②
①②

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数①f(x)=4x+
1
x
-5
,②f(x)=|log2x|-(
1
2
)x
,③f(x)=cos(x+2)-cosx,
判断如下两个命题的真假:
命题甲:f(x)在区间(1,2)上是增函数;
命题乙:f(x)在区间(0,+∞)上恰有两个零点x1,x2,且x1x2<1.
能使命题甲、乙均为真的函数的序号是(  )
A、①B、②C、①③D、①②

查看答案和解析>>

同步练习册答案