精英家教网 > 高中数学 > 题目详情

【题目】手机是人们必不可少的工具,极大地方便了人们的生活、工作、学习,现代社会的衣食住行都离不开它.某调查机构调查了某地区各品牌手机的线下销售情况,将数据整理得如下表格:

品牌

其他

销售比

每台利润(元)

100

80

85

1000

70

200

该地区某商场岀售各种品牌手机,以各品牌手机的销售比作为各品牌手机的售出概率.

1)此商场有一个优惠活动,每天抽取一个数字,且),规定若当天卖出的第台手机恰好是当天卖出的第一台手机时,则此手机可以打5.为保证每天该活动的中奖概率小于0.05,求的最小值;(

2)此商场中一个手机专卖店只出售两种品牌的手机,品牌手机的售出概率之比为,若此专卖店一天中卖出3台手机,其中手机台,求的分布列及此专卖店当天所获利润的期望值.

【答案】(1)8(2)详见解析

【解析】

1)解不等式即得的最小值;(2)由题得,再求出其对应的概率,即得的分布列及此专卖店当天所获利润的期望值.

解:(1)卖出一台手机的概率,卖出一台其他手机的概率

可得,即.

所以,故,即的最小值为8.

2)依题意可知手机售出的概率手机售出的概率

由题得,

所以

的分布列为

0

1

2

3

所以利润的期望值为(元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数,若,则称的“不动点”,若,则称的“稳定点”,函数的“不动点”和“稳定点”的集合分别记为,即,那么,

(1)求函数的“稳定点”;

(2)求证:

(3)若,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足对于任意实数都有,且当时,

1)判断的奇偶性并证明;

2)判断的单调性,并求当时,的最大值及最小值;

3)解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)R上的奇函数且当x>0f(x)=-x2+2x+2.

(1)f(x)的解析式

(2)画出f(x)的图像并指出f(x)的单调区间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数满足不等式

命题q:关于不等式对任意的恒成立.

1)若命题为真命题,求实数的取值范围;

2)若“为假命题,为真命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,已知直线的极坐标方程是,圆的参数方程为为参数,).

(1)若直线与圆有公共点,求实数的取值范围;

(2)当时,过点且与直线平行的直线交圆两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两家公司都需要招聘求职者,这两家公司的聘用信息如下:

甲公司

乙公司

职位

A

B

C

D

职位

A

B

C

D

月薪/千元

5

6

7

8

月薪/千元

4

6

8

10

获得相应职位概率

0.4

0.3

0.2

0.1

获得相应职位概率

0.4

0.3

0.2

0.1

(1)若两人分别去应聘甲、乙两家公司的C职位,记这两人被甲、乙两家公司的C职位录用的人数和为,求的分布列;

(2)根据甲、乙两家公司的聘用信息,如果你是该求职者,你会选择哪一家公司?说明理由。

(3)若小王和小李分别被甲、乙两家公司录用,求小王月薪高于小李的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点,且经过点.

(1)求椭圆的方程;

(2)点是坐标原点,若直线与椭圆相切,过,垂足为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知椭圆的焦距为,以椭圆C的右顶点A为圆心的圆与直线相交于PQ两点,且

(I)求椭圆C的标准方程和圆A的方程。

(II)不过原点的直线l与椭圆C交于MN两点,已知直线OMlON的斜率成等比数列,记以线段OM,线段ON为直径的圆的面积分别为的值是否为定值?若是,求出此值:若不是,说明理由.

查看答案和解析>>

同步练习册答案