【题目】手机是人们必不可少的工具,极大地方便了人们的生活、工作、学习,现代社会的衣食住行都离不开它.某调查机构调查了某地区各品牌手机的线下销售情况,将数据整理得如下表格:
品牌 | 其他 | ||||||
销售比 | |||||||
每台利润(元) | 100 | 80 | 85 | 1000 | 70 | 200 |
该地区某商场岀售各种品牌手机,以各品牌手机的销售比作为各品牌手机的售出概率.
(1)此商场有一个优惠活动,每天抽取一个数字(,且),规定若当天卖出的第台手机恰好是当天卖出的第一台手机时,则此手机可以打5折.为保证每天该活动的中奖概率小于0.05,求的最小值;(,)
(2)此商场中一个手机专卖店只出售和两种品牌的手机,,品牌手机的售出概率之比为,若此专卖店一天中卖出3台手机,其中手机台,求的分布列及此专卖店当天所获利润的期望值.
科目:高中数学 来源: 题型:
【题目】对于函数,若,则称为的“不动点”,若,则称为的“稳定点”,函数的“不动点”和“稳定点”的集合分别记为和,即,,那么,
(1)求函数的“稳定点”;
(2)求证:;
(3)若,且,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数满足对于任意实数,都有,且当时,,.
(1)判断的奇偶性并证明;
(2)判断的单调性,并求当时,的最大值及最小值;
(3)解关于的不等式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是R上的奇函数,且当x>0时,f(x)=-x2+2x+2.
(1)求f(x)的解析式;
(2)画出f(x)的图像,并指出f(x)的单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:实数满足不等式;
命题q:关于不等式对任意的恒成立.
(1)若命题为真命题,求实数的取值范围;
(2)若“”为假命题,“”为真命题,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,已知直线的极坐标方程是,圆的参数方程为(为参数,).
(1)若直线与圆有公共点,求实数的取值范围;
(2)当时,过点且与直线平行的直线交圆于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有甲、乙两家公司都需要招聘求职者,这两家公司的聘用信息如下:
甲公司 | 乙公司 | ||||||||
职位 | A | B | C | D | 职位 | A | B | C | D |
月薪/千元 | 5 | 6 | 7 | 8 | 月薪/千元 | 4 | 6 | 8 | 10 |
获得相应职位概率 | 0.4 | 0.3 | 0.2 | 0.1 | 获得相应职位概率 | 0.4 | 0.3 | 0.2 | 0.1 |
(1)若两人分别去应聘甲、乙两家公司的C职位,记这两人被甲、乙两家公司的C职位录用的人数和为,求的分布列;
(2)根据甲、乙两家公司的聘用信息,如果你是该求职者,你会选择哪一家公司?说明理由。
(3)若小王和小李分别被甲、乙两家公司录用,求小王月薪高于小李的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知椭圆的焦距为,以椭圆C的右顶点A为圆心的圆与直线相交于P,Q两点,且.
(I)求椭圆C的标准方程和圆A的方程。
(II)不过原点的直线l与椭圆C交于M,N两点,已知直线OM,l,ON的斜率成等比数列,记以线段OM,线段ON为直径的圆的面积分别为的值是否为定值?若是,求出此值:若不是,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com