【题目】扎比瓦卡是2018年俄罗斯世界杯足球赛吉祥物,该吉祥物以西伯利亚平原狼为蓝本.扎比瓦卡,俄语意为“进球者”.某厂生产“扎比瓦卡”的固定成本为15000元,每生产一件“扎比瓦卡”需要增加投入20元,根据初步测算,每个销售价格满足函数,其中x是“扎比瓦卡”的月产量(每月全部售完).
(1)将利润表示为月产量的函数;
(2)当月产量为何值时,该厂所获利润最大?最大利润是多少?(总收益=总成本+利润).
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(1)证明:BE⊥DC;
(2)求直线BE与平面PBD所成角的正弦值;
(3)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将一铁块高温融化后制成一张厚度忽略不计、面积为100dm2的矩形薄铁皮(如图),并沿虚线l1,l2裁剪成A,B,C三个矩形(B,C全等),用来制成一个柱体.现有两种方案:
方案①:以为母线,将A作为圆柱的侧面展开图,并从B,C中各裁剪出一个圆形作为圆柱的两个底面;
方案②:以为侧棱,将A作为正四棱柱的侧面展开图,并从B,C中各裁剪出一个正方形(各边分别与或垂直)作为正四棱柱的两个底面.
(1)设B,C都是正方形,且其内切圆恰为按方案①制成的圆柱的底面,求底面半径;
(2)设的长为dm,则当为多少时,能使按方案②制成的正四棱柱的体积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列按如下规律分布(其中表示行数,表示列数),若,则下列结果正确的是( )
第1列 | 第2列 | 第3列 | 第4列 | … | ||
第1行 | 1 | 3 | 9 | 19 | 33 | |
第2行 | 7 | 5 | 11 | 21 | ||
第3行 | 17 | 15 | 13 | 23 | ||
第4行 | 31 | 29 | 27 | 25 | ||
┇ |
A.,B.,C.,D.,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面向量,满足:||=2,||=1.
(1)若(2)()=1,求的值;
(2)设向量,的夹角为θ.若存在t∈R,使得,求cosθ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左,右顶点分别为右焦点为,直线是椭圆在点处的切线.设点是椭圆上异于的动点,直线与直线的交点为,且当时, 是等腰三角形.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设椭圆的长轴长等于,当点运动时,试判断以为直径的圆与直线的位置关系,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司欲生产一款迎春工艺品回馈消费者,工艺品的平面设计如图所示,该工艺品由直角和以为直径的半圆拼接而成,点为半圈上一点(异于,),点在线段上,且满足.已知,,设.
(1)为了使工艺礼品达到最佳观赏效果,需满足,且达到最大.当为何值时,工艺礼品达到最佳观赏效果;
(2)为了工艺礼品达到最佳稳定性便于收藏,需满足,且达到最大.当为何值时,取得最大值,并求该最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过长期观察得到:在交通繁忙的时段内,某公路汽车的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间的函数关系为
(1)在该时段内,当汽车的平均速度为多少时,车流量最大,最大车流量为多少?(精确到0.1千辆/小时)
(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com