精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线 右支上非顶点的一点A关于原点O的对称点为B,F为其右焦点,若AF⊥FB,设∠ABF=θ且 ,则双曲线离心率的取值范围是(
A.
B.
C.
D.(2,+∞)

【答案】C
【解析】解:如图所示,设双曲线的左焦点为F′,连接AF′,BF′. ∵AF⊥FB,∴四边形AFBF′为矩形.
因此|AB=|FF′|=2c.
则|AF|=2csinθ,|BF|=2ccosθ.
∵|AF′|﹣|AF|=2a.
∴2ccosθ﹣2csinθ=2a.
即c(cosθ﹣sinθ)=a,
则e= = =

∈( ),
则cos( )∈(0, ),
cos( )∈(0, ),
=
即e>
故双曲线离心率的取值范围是
故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)与y轴的交点为A,B(点A位于点B的上方),F为左焦点,原点O到直线FA的距离为 b.
(1)求椭圆C的离心率;
(2)设b=2,直线y=kx+4与椭圆C交于不同的两点M,N,求证:直线BM与直线AN的交点G在定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数g(x)=﹣2x2+6x﹣1,则:
(1)其对称轴:
(2)顶点坐标为
(3)单调区间为
(4)g(x)的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣1.
(1)对于任意的1≤x≤2,不等式4m2|f(x)|+4f(m)≤|f(x﹣1)|恒成立,求实数m的取值范围;
(2)若对任意实数x1∈[1,2].存在实数x2∈[1,2],使得f(x1)=|2f(x2)﹣ax2|成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】边长为2的正方形ABCD所在的平面与△CDE所在的平面交于CD,且AE⊥平面CDE,AE=1.

(1)求证:平面ABCD⊥平面ADE;
(2)设点F是棱BC上一点,若二面角A﹣DE﹣F的余弦值为 ,试确定点F在BC上的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以“赏中华诗词,寻文化基因,品生活之美”为宗旨的《中国诗词大会》,是央视科教频道推出的一档大型演播室文化益智节目,每季赛事共分为10场,每场分个人追逐赛与擂主争霸赛两部分,其中擂主争霸赛在本场个人追逐赛的优胜者与上一场擂主之间进行,一共备有9道抢答题,选手抢到并答对获得1分,答错对方得1分,当有一个选手累计得分达到5分时比赛结束,该选手就是本场的擂主,在某场比赛中,甲、乙两人进行擂主争霸赛,设每个题目甲答对的概率都为 ,乙答对的概率为 ,每道题目都有人抢答,且每人抢到答题权的概率均为 ,各题答题情况互不影响. (Ⅰ)求抢答一道题目,甲得1分的概率;
(Ⅱ)现在前5题已经抢答完毕,甲得2分,乙得3分,在接下来的比赛中,设甲的得分为ξ,求ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,运行相应的程序,输出的S=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|ax2+x﹣4a|,其中x∈[﹣2,2],a∈[﹣1,1].
(1)当α=1时,求函数y=f(x)的值域;
(2)记f(x)的最大值为M(a),求M(a)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图某空间几何体的正视图和俯视图分别为边长为2的正方形和正三角形,则该空间几何体的外接球的表面积为(
A.
B.
C.16π
D.21π

查看答案和解析>>

同步练习册答案