已知函数(,为自然对数的底数).
(1)若曲线在点处的切线平行于轴,求的值;
(2)求函数的极值;
(3)当的值时,若直线与曲线没有公共点,求的最大值.
(注:可能会用到的导数公式:;)
(1);(2) 当时,函数无极小值;当,在处取得极小值,无极大值;(3)1.
【解析】
试题分析:(1)依题意,,从而可求得的值;(2),分①时、②讨论,可知在上单调递减,在上单调递增,从而可求其极值;(3)令,则直线:与曲线没有公共点方程在上没有实数解.分与讨论即可得答案.
试题解析:(1)由,得.
又曲线在点处的切线平行于轴, 得,即,解得.
(2),
①当时,,为上的增函数,所以函数无极值.
②当时,令,得,. ,;,.
所以在上单调递减,在上单调递增,
故在处取得极小值,且极小值为,无极大值.
综上,当时,函数无极小值;当,在处取得极小值,无极大值.
(3)当时,,
令,
则直线:与曲线没有公共点, 等价于方程在上没有实数解.
假设,此时,,
又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故.
又时,,知方程在上没有实数解,所以的最大值为.
解法二:
(1)(2)同解法一.
(3)当时,.
直线:与曲线没有公共点,
等价于关于的方程在上没有实数解,即关于的方程: (*),在上没有实数解.
①当时,方程(*)可化为,在上没有实数解.
②当时,方程(*)化为.
令,则有.
令,得,
当变化时,的变化情况如下表:
当时,,同时当趋于时,趋于, 从而的取值范围为.
所以当时,方程(*)无实数解, 解得的取值范围是.
综上,得的最大值为.
考点:1.导数的计算;2.导数与极值关系;3.导数的几何意义.
科目:高中数学 来源:2013-2014学年四川省资阳市高三下学期4月高考模拟考试理科数学试卷(解析版) 题型:选择题
若x,y满足约束条件目标函数z=ax+2y仅在点(1,0)处取得最小值,则实数a的取值范围是( )
(A) (B)
(C) (D)
查看答案和解析>>
科目:高中数学 来源:2013-2014学年四川省高三第六期3月阶段性考试文科数学试卷(解析版) 题型:选择题
若抛物线的焦点与双曲线的右焦点重合,则的值为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年四川省高三二诊模拟理科数学试卷(解析版) 题型:填空题
一个空间几何体的三视图如图所示,其正视图、侧视图、俯视图均为等腰直角三角形,且直角边长都为1,则这个几何体的体积是__________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年四川省高三二诊模拟文科数学试卷(解析版) 题型:解答题
等比数列中,已知 .
(1)求数列的通项公式;
(2)若分别为等差数列的第3项和第5项,试求数列的通项公式及前项和。
查看答案和解析>>
科目:高中数学 来源:2013-2014学年四川省高三二诊模拟文科数学试卷(解析版) 题型:选择题
已知是不重合的直线,是不重合的平面,有下列命题:
①若,∥,则∥;
②若∥,∥,则∥;
③若,∥,则∥且∥;
④若,则∥
其中真命题的个数是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com