分析 (1)将a=1的值代入,求出函数的导数,计算f(1),f′(1)的值,代入切线方程即可;
(2)求出g(x)的导数,通过讨论a的范围,解关于导函数的不等式,求出函数的单调区间即可.
解答 解:(1)a=1时,f(x)=x-$\frac{1}{x}$-2lnx,(x>0),
f′(x)=1+$\frac{1}{{x}^{2}}$-$\frac{2}{x}$,
f(1)=0,f′(1)=1+1-2=0,
∴切线斜率是0,过(1,0),
故切线是x轴;
(2)g(x)=f(x)+$\frac{a}{x}$=ax-2lnx,(x>0),
g′(x)=a-$\frac{2}{x}$=$\frac{ax-2}{x}$,
a≤0时,g′(x)<0,g(x)在(0,+∞)递增,
a>0时,令g′(x)>0,解得:x>$\frac{2}{a}$,
令g′(x)<0,解得:0<x<$\frac{2}{a}$,
∴g(x)在(0,$\frac{2}{a}$)递减,在($\frac{2}{a}$,+∞)递增.
点评 本题考查了曲线的切线方程问题,考查导数的应用以及分类讨论思想,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{7}{4}$ | B. | $\frac{7}{5}$ | C. | $\frac{15}{4}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com