精英家教网 > 高中数学 > 题目详情
12.已知曲线C的方程为(x-3)2+(x-4)2=16,直线l1:kx-y-k=0和l2:x+2y+4=0,直线l1与曲线C交于不相同的两点P,Q.
(1)求k的范围;
(2)若l1与x轴的交点为A,设PQ中点M,l1与l2的交点为N,求证:|AN|•|AM|为定值.

分析 (1)圆心(3,4)到l1的距离$d=\frac{{|{2k-4}|}}{{\sqrt{1+{k^2}}}}<4$,解出即可得出.
(2)直线l1:kx-y-k=0恒过定点(1,0),所以点A的坐标为(1,0),如图所示:将l1方程代入圆方程,
整理得(1+k)2x2-[6+2k(k+4)]•x+k2+8k+9=0.由韦达定理和中点的坐标公式可得M坐标.解方程组$\left\{{\begin{array}{l}{kx-y-k=0}\\{x+2y+4=0}\end{array}}\right.$,可得N坐标.再由两点间的距离公式化简得|AM|•|AN|.

解答 (1)解:圆心(3,4)到l1的距离$d=\frac{{|{2k-4}|}}{{\sqrt{1+{k^2}}}}<4$,
即$\frac{{2{k^2}-8k+8}}{{1+{k^2}}}<8$,解得$k>0或k<-\frac{4}{3}$.
(2)证明:直线l1:kx-y-k=0恒过定点(1,0),
所以点A的坐标为(1,0),如图所示:将l1方程代入圆方程,
整理得(1+k)2x2-[6+2k(k+4)]•x+k2+8k+9=0.
由韦达定理和中点的坐标公式知:${x_M}=\frac{{{x_1}+{x_2}}}{2}=\frac{{3+k({k+4})}}{{1+{k^2}}}$,
因此,yM=$\frac{4{k}^{2}+2k}{1+{k}^{2}}$.
解方程组$\left\{{\begin{array}{l}{kx-y-k=0}\\{x+2y+4=0}\end{array}}\right.$,得$\left\{{\begin{array}{l}{x=\frac{2k-4}{2k+1}}\\{y=\frac{-5k}{2k+1}}\end{array}}\right.$,即$N({\frac{2k-4}{2k+1},\frac{-5k}{2k+1}})$.
再由两点间的距离公式化简得|AM|•|AN|=10.

点评 本题考查了直线与圆的方程、点到直线的距离公式、一元二次方程的根与系数的关系、中点坐标公式、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数y=sin(2x+$\frac{π}{3}$ )的一条对称轴为(  )
A.x=$\frac{π}{2}$B.x=0C.x=-$\frac{π}{6}$D.x=$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.以椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$的中心为原点,左焦点为焦点的抛物线的标准方程是(  )
A.x2=8yB.y2=16xC.x2=-8yD.y2=-16x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(1,$\frac{\sqrt{3}}{2}$),椭圆的左、右顶点分别为A1,A2,点P坐标为(4,0),|PA1|,|A1A2|,|PA2|成等差数列.
(1)求椭圆的标准方程;
(2)椭圆内部是否存在一个定点,过此点的直线交椭圆于M,N两点,且$\overrightarrow{PM}$•$\overrightarrow{PN}$=12恒成立,若存在,求出此点,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.把长和宽分别为6和3的矩形卷成一个圆柱的侧面,求这个圆柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.从2013年1月1号开始,铁道部对火车票大面积降价,但降价幅度引发了争议.于是,某高校对此展开了一项调查,得到如下数据:
对此事的态度好评(有利于百姓出行)中评(影响不大)差评(纯属忽悠)不关心
人数2000400030001000
若从参与调查的人员中,按分层抽样的方法抽取50人进行座谈,则给出“差评”与“好评”的人数之差为(  )
A.10B.8C.5D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.求值:tan210°=(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等差数列{an}与等差数列{bn}的前n项和分别为Sn和Tn,若$\frac{S_n}{T_n}=\frac{3n-1}{2n+3}$,则$\frac{{{a_{10}}}}{{{b_{10}}}}$=(  )
A.$\frac{3}{2}$B.$\frac{14}{13}$C.$\frac{56}{41}$D.$\frac{29}{23}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=Asin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的图象如图所示,则y=f(x)+cos(ωx+$\frac{7π}{12}$)的增区间是[kπ-$\frac{7}{24}$π,kπ+$\frac{5π}{24}$],k∈Z.

查看答案和解析>>

同步练习册答案