【题目】【2018河南安阳市高三一模】如下图,在平面直角坐标系中,直线与直线之间的阴影部分即为,区域中动点到的距离之积为1.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)动直线穿过区域,分别交直线于两点,若直线与轨迹有且只有一个公共点,求证: 的面积恒为定值.
【答案】(Ⅰ);(Ⅱ)见解析.
【解析】试题分析:
(Ⅰ)由点到直线距离公式直接把已知表示出来,并化简可得方程;
(Ⅱ)直线与轨迹有且只有一个公共点,即直线与轨迹相切,因此可求出当与垂直(即斜率不存在)时, 面积,当斜率存在时,可设其方程为,与双曲线方程联立方程组,由可得,再设出,由直线相交可求得(用表示),计算面积可得结论.
试题解析:
(Ⅰ)由题意得, .
因为点在区域内,所以与同号,得,
即点的轨迹的方程为.
(Ⅱ)设直线与轴相交于点,当直线的斜率不存在时, , ,得.
当直线的斜率存在时,设其方程为,显然,则,
把直线的方程与联立得,
由直线与轨迹有且只有一个公共点,知,
得,得或.
设, ,由得,同理,得.
所以 .
综上, 的面积恒为定值2.
科目:高中数学 来源: 题型:
【题目】在平面上, ⊥ ,| |=| |=1, = + .若| |< ,则| |的取值范围是( )
A.(0, ]
B.( , ]
C.( , ]
D.( , ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中, , , ,若该三棱锥的四个顶点均在同一球面上,则该球的体积为( )
A. B. C. D.
【答案】D
【解析】在三棱锥中,因为, , ,所以,则该几何体的外接球即为以为棱长的长方体的外接球,则 ,其体积为 ;故选D.
点睛:在处理几何体的外接球问题,往往将所给几何体与正方体或长方体进行联系,常用补体法补成正方体或长方体进行处理,本题中由数量关系可证得 从而几何体的外接球即为以为棱长的长方体的外接球,也是处理本题的技巧所在.
【题型】单选题
【结束】
21
【题目】已知函数,则的大致图象为( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某游乐场有一个半径为50米的摩天轮,该摩天轮的圆心距离地面52米,摩天轮逆时针匀速转动,每转动一圈需要分钟.若游客从最低点处登上摩天轮,从摩天轮开始转动计时.
(I)求游客与地面的距离(米)与摩天轮转动时间(分)的函数关系式;
(Ⅱ)摩天轮转动一圈的过程中,游客的高度在距地面77米及以上的时间不少于4分钟,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图象如图所示,
(1)画出函数f(x),x∈R剩余部分的图象,并根据图象写出函数f(x),x∈R的单调区间;(只写答案)
(2)求函数f(x),x∈R的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在xOy平面上,将两个半圆弧(x﹣1)2+y2=1(x≥1)和(x﹣3)2+y2=1(x≥3),两条直线y=1和y=﹣1围成的封闭图形记为D,如图中阴影部分,记D绕y轴旋转一周而成的几何体为Ω.过(0,y)(|y|≤1)作Ω的水平截面,所得截面积为4π +8π.试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com