【题目】设函数f(x)=2x2+bx﹣alnx.
(1)当a=5,b=﹣1时,求f(x)的单调区间;
(2)若对任意b∈[﹣3,﹣2],都存在x∈(1,e2)(e为自然对数的底数),使得f(x)<0成立,求实数a的取值范围.
【答案】
(1)解:当a=5,b=﹣1时,f(x)=2x2+bx﹣5lnx.x∈(0,+∞),
∴f′(x)=4x﹣1﹣ = = ,
由f′(x)<0,得﹣1<x< ,由f′(x)>0,得x<﹣1或x> ,
∴f(x)的递减区间为(0, ),f(x)的递增区间为( ,+∞)
(2)解:设:g(b)=xb+2x2﹣alnx,b∈[﹣3,﹣2],g(b)为增函数.
根据题意可知:对任意b∈[﹣3,﹣2],存在x∈(1,e2),使得f(x)<0成立,则:
g(b)max=g(﹣2)=2x2﹣2x﹣alnx<0在(1,e2)上有解,
令h(x)=2x2﹣2x﹣alnx,只需存在x0∈(1,e2),使得h(x0)<h(1)=0即可,
∵h′(x)=4x﹣2﹣ = ,又令F(x)=4x2﹣2x﹣a,x∈(1,e2),
F′(x)=8x﹣2>0,x∈(1,e2),
∴F(x)在(1,e2)单调递增,
∴F(x)>F(1)=2﹣a,
当a≤2时,F(x)>0,即h′(x)>0,
∴h(x)在(1,e2)上增函数,
∴h(x)>h(1)=0,不符合题意;
当a>2时,F(1)=2﹣a<0,F(e2)=4e4﹣2e2﹣a,
若F(e2)≤0,即a≥4e4﹣2e2=2e2(e2﹣1)>2时,F(x)<0,即h′(x)<0,h(x)在(1,e2)上单调递减,
又h(1)=0,
∴存在x0∈(1,e2)使得F(x0)<0,
若F(e2)>0,即2<a<4e4﹣2e2时,在(1,e2)上存在实数m,使得F(m)=0,即x∈(1,m)时,F(x)<0,h′(x)<0,
∴h(x)在(1,m)上单调递减,
∴x0∈(1,m)使得h(x0)<h(1)=0,
综上所述,当a>2时,对任意b∈[﹣3,﹣2],存在x∈(1,e2),使得f(x)<0成立
【解析】(1)当a=5,b=﹣1时,求得函数解析式及定义域,求导,令f′(x)<0求得单调递减区间,f′(x)>0,求得单调递增区间;(2)令g(b)=xb+2x2﹣alnx,b∈[﹣3,﹣2],问题转化为在g(b)max=g(﹣2)=2x2﹣2x﹣alnx<0在(1,e2)上有解,亦即只需存在x0∈(1,e2),使得h(x0)<h(1)=0即可,连续利用导函数,然后分别对当a≤2,a>2时,看是否存在x0∈(1,e)使得h(x0)<h(1)=0,进而得到结论.
【考点精析】本题主要考查了利用导数研究函数的单调性和函数的最大(小)值与导数的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x+1|+|x﹣3|
(1)求函数f(x)的最小值;
(2)若{x|f(x)≤t2﹣3t}∩{x|﹣2≤x≤0}≠.求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f (x)的定义域是,对任意
当时,.关于函数给出下列四个命题:
①函数是奇函数;
②函数是周期函数;
③函数的全部零点为;
④当时,函数的图象与函数的图象有且只有三个公共点.
其中真命题的个数为 .
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1 , F2分别是椭圆 的左、右焦点F1 , F2关于直线x+y﹣2=0的对称点是圆C的一条直径的两个端点.
(1)求圆C的方程;
(2)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数满足且,则称函数为“函数”.
试判断是否为“函数”,并说明理由;
函数为“函数”,且当时,,求的解析式,并写出在上的单调递增区间;
在条件下,当时,关于的方程为常数有解,记该方程所有解的和为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代秦九韶算法可计算多项式anxn+an﹣1xn﹣1+…+a1x+a0的值,它所反映的程序框图如图所示,当x=1时,当多项式为x4+4x3+6x2+4x+1的值为( )
A.5
B.16
C.15
D.11
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥面ABCD,已知∠ABC=45°,AB=2,BC=2 ,SB=SC= .
(1)设平面SCD与平面SAB的交线为l,求证:l∥AB;
(2)求证:SA⊥BC;
(3)求直线SD与面SAB所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的左、右焦点分别是,且点在上,抛物线与椭圆交于四点
(I)求的方程;
(Ⅱ)试探究坐标平面上是否存在定点,满足?(若存在,求出的坐标;若不存在,需说明理由.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com