【题目】如图,在四棱锥中,平面,底面是直角梯形,其中,,,,为棱上的点,且.
(1)求证:平面;
(2)求二面角的余弦值;
(3)设为棱上的点(不与,重合),且直线与平面所成角的正弦值为,求的值.
【答案】(1)见解析;(2);(3)
【解析】
(1)建立适当的空间直角坐标系,确定各点坐标,得到,,根据线面垂直的判定定理,即可证明.
(2)由(1)可知,平面的法向量,确定平面的法向量,根据,求解即可.
(3)设,确定,,根据直线与平面所成角的正弦值为,求解,即可.
(1)因为平面,平面,平面
所以,
因为
则以A为坐标原点,建立如图所示的空间直角坐标系.
由已知可得,,,,,.
所以,,.
因为,.
所以,
又,平面,平面.
所以平面.
(2)设平面的法向量,由(1)可知,
设平面的法向量
因为,.
所以,即
不妨设,得.
所以二面角的余弦值为.
(3)设,即.
所以,即.
因为直线与平面所成角的正弦值为
所以
即解得
即.
科目:高中数学 来源: 题型:
【题目】为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量与时间成正比,药物释放完毕后,与的函数关系式为(为常数).如图所示,根据图中提供的信息,回答下列问题:
(1)从药物释放开始,每立方米空气中的含药量与时间之间的函数关系式为________;
(2)据测定,当空气中每立方米的含药量降低到以下时,学生方可进教室,那么从药物释放开始,至少需要经过多少时间学生才能回到教室?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:y=x+m,m∈R.
(I)若以点M(2,0)为圆心的圆与直线l相切与点P,且点P在y轴上,求该圆的方程;
(II)若直线l关于x轴对称的直线为,问直线与抛物线C:x2=4y是否相切?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知双曲线.
(1)过的左顶点引的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;
(2)设斜率为1的直线l交于P,Q两点,若l与圆相切,求证:;
(3)设椭圆,若M,N分别是,上的动点,且,求证:O到直线MN的距离是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线和圆,倾斜角为45°的直线过抛物线的焦点,且与圆相切.
(1)求的值;
(2)动点在抛物线的准线上,动点在上,若在点处的切线交轴于点,设.求证点在定直线上,并求该定直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着社会的发展与进步,传播和存储状态已全面进入数字时代,以数字格式存储,以互联网为平台进行传输的音乐——数字音乐已然融入了我们的日常生活.虽然我国音乐相关市场仍处在起步阶段,但政策利好使音乐产业逐渐得到资本市场更多的关注.对比如下两幅统计图,下列说法正确的是( )
2011-2018年中国音乐产业投融资事件数量统计图
2013-2021年中国录制音乐营收变化及趋势预测统计图
A.2011~2018年我国音乐产业投融资事件数量逐年增长
B.2013~2018年我国录制音乐营收与音乐产业投融资事件数量呈正相关关系
C.2016年我国音乐产业投融资事件的平均营收约为亿美元
D.2013~2019年我国录制音乐营收年增长率最大的是2018年
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com