精英家教网 > 高中数学 > 题目详情
已知实数a、b、c、d满足a2+b2=1,c2+d2=2,求ac+bd的最大值.
分析:首先由等式a2+b2=x2,c2+d2=y2求证xy≥ac+bd.把已知条件代入得到x2y2=(a2+b2)(c2+d2),展开再根据基本不等式证明求解,即可得到结果.
解答:解:∵(ac+bd)2=(ac)2+(bd)2+2abcd
≤(ac)2+(bd)2+(ad)2+(bc)2
=(a2+b2)(c2+d2)=2,(5分)
|ac+bd|≤
2
,即-
2
≤ac+bd≤
2
,(8分)
当且仅当ad=bc,即
c
a
=
d
b
=
2
时取最大值
2

综上ac+bd的最大值为
2
.(10分)
点评:此题主要考查基本不等式的证明问题,有一定的技巧性,在做题的时候同学们要注意认真分析,才能选择出较容易的方法解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数a,b,c满足a≤b≤c,且ab+bc+ca=0,abc=1,不等式|a+b|≥k|c|恒成立.则实数k的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b,c满足c<b<a且ac<0,则下列选项中一定不成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若关于x的不等式|x+1|-|x-2|<a的解集不是空集,求实数a的取值范围;
(2)已知实数a,b,c,满足a+b+c=1,求(a-1)2+2(b-2)2+3(c-3)2最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲已知实数a,b,c满足a2+2b2+3c2=24
①求a+2b+3c的最值;
②若满足题设条件的任意实数a,b,c,不等式a+2b+3c>|x+1|-14恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知实数a,b,c,d,e满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,试确定e的最大值.

查看答案和解析>>

同步练习册答案