精英家教网 > 高中数学 > 题目详情
(2011•黑龙江一模)已知函数f(x)=
3
sinxcos(x+
π
3
)+
3
4

(1)求函数f(x)的单调递增区间;
(2)已知△ABC中,角A,B,C所对的边长分别为a,b,c,若f(A)=0,a=
3
,b=2
,求△ABC的面积S.
分析:(1)利用两角和差的正弦公式化简函数f(x)的解析式为
3
2
sin(2x+
π
3
)
,由2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,k∈Z
,求得x的范围,即得函数f(x)的单调递增区间.
(2)由f(A)=0,求出A=
π
3
A=
6
,再由三角形中大边对大角得A=
π
3
,由正弦定理求得sinB=1,则B=
π
2
C=
π
6
,由S=
1
2
absinC
求得结果.
解答:解:(1)f(x)=
3
sinx(cosxcos
π
3
-sinxsin
π
3
)+
3
4
=
3
2
sinxcosx-
3
2
sin2x+
3
4

=
3
4
sin2x+
3
4
cos2x
=
3
2
sin(2x+
π
3
)
…(3分)
2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,k∈Z
,得kπ-
12
≤x≤kπ+
π
12
,k∈Z

所以函数f(x)的单调递增区间为[kπ-
12
,kπ+
π
12
],k∈Z
. …(6分)
(2)∵f(A)=0,∴
3
2
sin(2A+
π
3
)=0
,解得A=
π
3
A=
6
,又a<b,故A=
π
3
.…(8分)
a
sinA
=
b
sinB
,得sinB=1,则B=
π
2
C=
π
6
,…(10分)
所以S=
1
2
absinC=
3
2
.…(12分)
点评:本题主要考查正弦定理,二倍角公式,已知三角函数值求角的大小,正弦函数的单调性,两角和差的正弦公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•黑龙江一模)已知不等式x2-6x+a(6-a)<0的解集中恰有三个整数,则实数a的取值范围为
[1,2)∪(4,5]
[1,2)∪(4,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黑龙江一模)已知三棱柱ABC-A1B1C1,底面三角形ABC为正三角形,侧棱AA1⊥底面ABC,AB=2,AA1=4,E为AA1的中点,F为BC中点.
(1)求证:直线AF∥平面BEC1
(2)求点C到平面BEC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黑龙江一模)已知三棱柱ABC-A1B1C1,底面三角形ABC为正三角形,侧棱AA1⊥底面ABC,AB=2,AA1=4,E为AA1的中点,F为BC中点.
(1)求证:直线AF∥平面BEC1
(2)求平面BEC1和平面ABC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黑龙江一模)阅读如图所示的程序框图,若输入p=5,q=6,则输出a,i的值分别为(  )

查看答案和解析>>

同步练习册答案