精英家教网 > 高中数学 > 题目详情
3.在空间四边形ABCD中,E,F分别是AB,AD的中点
(1)求证:EF∥平面BCD
(2)若AB=AD,BC=CD,求证:AC⊥BD.

分析 (1)利用三角形的中位线的性质可得EF∥BD,利用线面平行的判定定理,即可得出结论.
(2)取BD的中点G,连接AG,CG,可得BD⊥AG,BD⊥CG,从而可证BD⊥平面AGC,即可证明BD⊥AC.

解答 证明:(1)∵空间四边形ABCD中,E,F分别是AB,AD的中点.
∴EF∥BD,
∵EF?平面BCD,BD?平面BCD,
∴EF∥平面BCD.
(2)如图,取BD的中点G,连接AG,CG,
∵AB=AD,BC=CD,
∴BD⊥AG,BD⊥CG,
∵AG∩CG=G,
∴BD⊥平面AGC,又AC?平面AGC,
∴BD⊥AC.

点评 本题考查线面平行的判定定理,直线与平面垂直的性质,考查学生空间想象能力,推理论证能力,分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左焦点为F,过点F的直线交椭圆于A,B两点,|AF|的最大值为M,|BF|的最小值为m,满足$M•m=\frac{3}{4}{a^2}$.
(Ⅰ)若线段AB垂直于x轴时,|AB|=$\frac{3}{2}$,求椭圆的方程;
(Ⅱ) 设线段AB的中点为G,AB的垂直平分线与x轴和y轴分别交于D,E两点,O是坐标原点,记△GFD的面积为S1,△OED的面积为S2,求$\frac{{2{S_1}{S_2}}}{{{S_1}^2+{S_2}^2}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.不等式|x-5|+|x+1|<8的解集为(  )
A.(-∞,2)B.(-2,6)C.(6,+∞)D.(-1,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不等式$\frac{4}{x-2}>x-2$的解集是(  )
A.(-∞,0)∪(2,4)B.[0,2)∪[4,+∞)C.[2,4)D.(-∞,-2]∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知定义在R上的函数f(x),g(x)满足$\frac{f(x)}{g(x)}={a^x}$,且f′(x)g(x)<f(x)g′(x),$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{5}{2}$,若有穷数列$\left\{{\frac{f(n)}{g(n)}}\right\},n∈{N^*}$的前n项和为$\frac{255}{256}$,则n=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数$f(x)={log_2}(x+\sqrt{{x^2}+1})+\frac{{5{e^x}+3}}{{{e^x}+1}}$,x∈[-k,k](k>0)的最大值和最小值分别为M和m,则M+m=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(Ⅰ)设函数f(x)=$\left\{{\begin{array}{l}{{{log}_{\frac{1}{2}}}x}&{x>0}\\{x+6}&{x≤0}\end{array}}$,计算f(f(-4))的值;
(Ⅱ)计算:log525+lg$\frac{1}{100}+ln\sqrt{e}+{2^{{{log}_2}1}}$;
(Ⅲ)计算:${(\frac{9}{16})^{0.5}}+{(-3)^{-1}}÷{0.75^{-2}}-{(2\frac{10}{27})^{-\;\frac{2}{3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“x=1”是“x2-1=0”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算:
(1)${(2\frac{3}{5})^0}+{2^{-4}}×{(2\frac{1}{4})^{-\frac{3}{2}}}-{0.01^{0.5}}$;
(2)(lg2)2+lg2•lg50+lg25.

查看答案和解析>>

同步练习册答案