【题目】已知函数,,,其中为正实数,为自然对数的底数.
(1)求函数的单调区间;
(2)是否存在实数,使得对任意给定的,在区间上总存在两个不同的,,使得成立?若存在,求出正实数的取值范围;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】据长期统计分析,某货物每天的需求量在17与26之间,日需求量(件)的频率分布如下表所示:
需求量 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
频率 | 0.12 | 0.18 | 0.23 | 0.13 | 0.10 | 0.08 | 0.05 | 0.04 | 0.04 | 0.03 |
已知其成本为每件5元,售价为每件10元.若供大于求,则每件需降价处理,处理价每件2元.假设每天的进货量必需固定.
(1)设每天的进货量为,视日需求量的频率为概率,求在每天进货量为的条件下,日销售量的期望值(用表示);
(2)在(1)的条件下,写出和的关系式,并判断为何值时,日利润的均值最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,椭圆C:的离心率是,抛物线E:的焦点F是C的一个顶点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
(i)求证:点M在定直线上;
(ii)直线与y轴交于点G,记的面积为,的面积为,求的最大值及取得最大值时点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线与抛物线:交于,两点,且的面积为16(为坐标原点).
(1)求的方程.
(2)直线经过的焦点且不与轴垂直,与交于,两点,若线段的垂直平分线与轴交于点,试问在轴上是否存在点,使为定值?若存在,求该定值及的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,函数F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范围;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在区间[0,6]上的最大值M(a).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,梯形中,,,,为的中点,将沿翻折,构成一个四棱锥,如图2.
(1)求证:异面直线与垂直;
(2)求直线与平面所成角的大小;
(3)若三棱锥的体积为,求点到平面的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com