精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆的右准线的方程为焦距为.

1求椭圆的方程;

2过定点作直线与椭圆交于点(异于椭圆的左、右顶点)两点,设直线与直线相交于点.

,试求点的坐标;

求证:点始终在一条直线上.

【答案】(1)点的坐标为 的坐标为(2)见解析.

【解析】试题分析:(1)由椭圆的离心率公式和a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(2)①求得直线MA1的方程和以MA2的方程,代入椭圆方程,求得交点P,Q的坐标;②设点M(x0,y0),求得直线MA1的方程和以MA2的方程,代入椭圆方程,求得交点P,Q的坐标,结合P,Q,B三点共线,所以kPB=kQB,化简整理,可得.分别考虑,即可得到点M始终在一条定直线x=4上.

试题解析:

⑴由 所以椭圆的方程为

⑵①因为 ,所以的方程为,代入

,即

因为,所以,则,所以点的坐标为

同理可得点的坐标为

②设点,由题意, 因为 所以直线的方程为,代入,得

,因为

所以,则,故点的坐标为

同理可得点的坐标为

因为 三点共线,所以

所以,即

由题意, ,所以

所以,则.若,则点在椭圆上, 为同一点,不合题意.故,即点始终在定直线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,过点作圆的切线交椭圆两点.

(Ⅰ)求椭圆的焦点坐标和离心率;

(Ⅱ)将表示成的函数,并求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且,若时,有.

(1)证明上是增函数;

(2)解不等式

(3)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集为[﹣5,﹣1],求实数a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和是Sn,且Sn=1(n∈N),数列{bn}是公差d不等于0的等差数列,且满足:b1=b2,b5,ba14成等比数列.

(1)求数列{an}、{bn}的通项公式;

(2)设cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校高一年级研究性学习小组共有9名学生,其中有3名男生和6名女生.在研究性学习过程中,要进行两次汇报活动(即开题汇报和结题汇报),每次汇报都从这9名学生中随机选1 人作为代表发言.设每人每次被选中与否均互不影响.

1求两次汇报活动都由小组成员甲发言的概率;

2为男生发言次数与女生发言次数之差的绝对值,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形的边长为,将菱形沿对角线折起,得到三棱锥,点是棱的中点,

)求证:平面

)求证:平面平面

)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

若关于的不等式的解集为,求实数的取值范围

若关于的不等式的解集是,求的值

若关于的不等式的解集是,集合,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】矩形中, 边所在直线的方程为,点边所在直线上.

)求边所在直线的方程.

)求矩形外接圆的方程.

)若过点作题()中的圆的切线,求切线的方程.

查看答案和解析>>

同步练习册答案