精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)是定义在(﹣∞,+∞)上的增函数,实数a使得f(1﹣ax﹣x2)<f(2﹣a)对于任意x∈[0,1]都成立,则实数a的取值范围是(
A.(﹣∞,1)
B.[﹣2,0]
C.(﹣2﹣2 ,﹣2+2
D.[0,1]

【答案】A
【解析】解:法一:由条件得1﹣ax﹣x2<2﹣a对于x∈[0,1]恒成立 令g(x)=x2+ax﹣a+1,只需g(x)在[0,1]上的最小值大于0即可.
g(x)=x2+ax﹣a+1=(x+ 2 ﹣a+1.
①当﹣ <0,即a>0时,g(x)min=g(0)=1﹣a>0,∴a<1,故0<a<1;
②当0≤﹣ ≤1,即﹣2≤a≤0时,g(x)min=g(﹣ )=﹣ ﹣a+1>0,∴﹣2﹣2 <a<﹣2+2 ,故﹣2≤a≤0;
③当﹣ >1,即a<﹣2时,g(x)min=g(1)=2>0,满足,故a<﹣2.
综上a<1.
法二:由1﹣ax﹣x2<2﹣a得(1﹣x)a<x2+1,
∵x∈[0,1],∴1﹣x≥0,
∴①当x=1时,0<2恒成立,此时a∈R;
②当x∈[0,1)时,a< 恒成立.
求当x∈[0,1)时,函数y= 的最小值.
令t=1﹣x(t∈(0,1]),则y= = =t+ ﹣2,
而函数y=t+ ﹣2是(0,1]上的减函数,所以当且仅当t=1,即x=0时,ymin=1.
故要使不等式在[0,1)上恒成立,只需a<1,
由①②得a<1.
故选:A
解法一:由条件得1﹣ax﹣x2<2﹣a对于x∈[0,1]恒成立,令g(x)=x2+ax﹣a+1,只需g(x)在[0,1]上的最小值大于0即可,分类讨论,求最值即可求出实数a的取值范围;
解法二:由1﹣ax﹣x2<2﹣a,得(1﹣x)a<x2+1,对x讨论,再分离参数,求最值,即可求出实数a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(Ⅰ)讨论函数的单调性及极值;

(Ⅱ)若不等式内恒成立,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6 , (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log3a1+log3a2+…+log3an , 求数列{ }的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}满足a1=1,(n+1)a2n+1+an+1an﹣na =0,数列{bn}的前n项和为Sn且Sn=1﹣bn
(1)求{an}和{bn}的通项;
(2)令cn= , ①求{cn}的前n项和Tn
②是否存在正整数m满足m>3,c2 , c3 , cm成等差数列?若存在,请求出m;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点(1,﹣2)和( ,0)在直线l:ax﹣y﹣1=0(a≠0)的两侧,则直线l的倾斜角的取值范围是(
A.(
B.(
C.(
D.(0, )∪( ,π)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C所对的边分别为a,b,c,向量 =(c+a,b), =(c﹣a,b﹣c),且
(1)求角A的大小;
(2)若a=3,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球.

(Ⅰ)若两个球颜色不同,求不同取法的种数;

(Ⅱ)在(1)的条件下,记两球编号的差的绝对值为随机变量X,求随机变量X的概率分布与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,OA、OB是两条公路(近似看成两条直线), ,在∠AOB内有一纪念塔P(大小忽略不计),已知P到直线OA、OB的距离分别为PD、PE,PD=6千米,PE=12千米.现经过纪念塔P修建一条直线型小路,与两条公路OA、OB分别交于点M、N.
(1)求纪念塔P到两条公路交点O处的距离;
(2)若纪念塔P为小路MN的中点,求小路MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足Sn=n2﹣4n,数列{bn}中,b1= 对任意正整数
(1)求数列{an}的通项公式;
(2)是否存在实数μ,使得数列{3nbn+μ}是等比数列?若存在,请求出实数μ及公比q的值,若不存在,请说明理由;
(3)求证:

查看答案和解析>>

同步练习册答案