精英家教网 > 高中数学 > 题目详情

已知函数f(x)=Asin(2x+θ),其中A≠0,θ∈(0,).

(1)若函数f(x)的图象过点E(-,1),F(),求函数f(x)的解析式;
(2)如图,点M,N是函数y=f(x)的图象在y轴两侧与x轴的两个相邻交点,函数图象上一点P(t,)满足·,求函数f(x)的最大值.

(1)f(x)=2sin(2x+)
(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

将形如的符号称二阶行列式,现规定 , 函数=在一个周期内的图象如图所示,为图象的最高点,为图象与轴的交点,且为正三角形。
(1)求的值及函数的单调递增区间;
(2)若,在上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,两个圆形飞轮通过皮带传动,大飞轮O1的半径为2r(r为常数),小飞轮O2的半径为r,O1O2=4r.在大飞轮的边缘上有两个点A,B,满足∠BO1A=,在小飞轮的边缘上有点C.设大飞轮逆时针旋转,传动开始时,点B,C在水平直线O1O2上.

(1)求点A到达最高点时A,C间的距离;
(2)求点B,C在传动过程中高度差的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(1)求函数的最小正周期和单调递增区间;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的最小正周期;
(2)求在闭区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,单位圆(半径为1的圆)的圆心O为坐标原点,单位圆与y轴的正半轴交于点A,与钝角α的终边OB交于点B(xB,yB),设∠BAO=β.

(1)用β表示α;
(2)如果 sin β=,求点B(xB,yB)坐标;
(3)求xB-yB的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

化简:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某广告公司设计一个凸八边形的商标,它的中间是一个正方形,外面是四个腰长为,顶角为的等腰三角形.
(1)若角时,求该八边形的面积;
(2)写出的取值范围,当取何值时该八边形的面积最大,并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知sin(3π+α)=2sin(+α),求下列各式的值:
(1)
(2)sin2α+sin2α.

查看答案和解析>>

同步练习册答案