精英家教网 > 高中数学 > 题目详情
(2012•江西模拟)如图,把边长为2的正六边形ABCDEF沿对角线BE折起,使|AC|=
6

(1)求证:面ABEF⊥面BCDE;
(2)求五面体ABCDEF的体积.
分析:(1)设原正六边形中,AC∩BE=O,DF∩BE=O',证明DF⊥BE,证明OA⊥OC,然后证明面ABEF⊥面BCDE;
(2)说明AOC-FO'D是侧棱长(高)为2的直三棱柱,通过VABCDEF=2VB-AOC+VAOC-FO'D求出体积.
解答:解:(1)设原正六边形中,AC∩BE=O,DF∩BE=O',
由正六边形的几何性质可知OA=OC=
3
,AC⊥BE,DF⊥BE…(2分)
OA2+OC2=AC2=6⇒OA⊥OC
OA⊥OB
OA?面ABEF

∴OA⊥面BCDE,
∴面ABEF⊥面BCDE;
(2)由BE⊥面AOC,BE⊥面FO'D知,面AOC∥面FO'D,故AOC-FO'D是侧棱长(高)为2的直三棱柱,
且三棱锥B-AOC和E-FO'D为大小相同的三棱锥…(9分)
∴VABCDEF=2VB-AOC+VAOC-FO'D=2•
1
3
1
2
(
3
)
2
•1+
1
2
(
3
)
2
•2
…(11分)
=4…(12分)
点评:本题考查直线与平面垂直,平面与平面垂直的判定,几何体的体积的求法,考查空间想象能力,计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江西模拟)球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,△ABC是边长为2的正三角形,面SAB⊥面ABC,则棱锥S-ABC的体积的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)在△ABC中,P是BC边中点,角A、B、C的对边分别是a、b、c,若c
AC
+a
PA
+b
PB
=
0
,则△ABC的形状为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)已知数列{an}是各项均不为0的等差数列,公差为d,Sn 为其前n项和,且满足an2=S2n-1,n∈N*.数列{bn}满足bn=
1anan+1
,Tn为数列{bn}的前n项和.
(1)求数列{an}的通项公式和Tn
(2)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn,成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)已知函数f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1
,x∈R,将函数f(x)向左平移
π
6
个单位后得函数g(x),设△ABC三个角A、B、C的对边分别为a、b、c.
(Ⅰ)若c=
7
,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且
m
=(cosA,cosB)
n
=(1,sinA-cosAtanB)
,求
m
n
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右顶点A作斜率为-1的直线,该直线与双曲线的两条渐进线的交点分别为B、C.若
AB
=
1
2
BC
,则双曲线的离心率是
5
5

查看答案和解析>>

同步练习册答案