精英家教网 > 高中数学 > 题目详情

【题目】下列说法正确的是(

A.的必要不充分条件

B.为真命题为真命题的必要不充分条件

C.命题的否定是:使得

D.命题p,则是真命题

【答案】A

【解析】

A. 根据判断.B. 根据为真命题pq都是真命题,为真命题 pq都是真命题或一真一假判断.C. 根据全称命题的否定判断.D. 根据 命题p是真命题,结合命题的否定判断.

因为,所以 推不出故不充分,能推出,故必要,故A正确.

因为为真命题pq都是真命题,为真命题 pq都是真命题或一真一假,故充分不必要,故B错误.

命题的否定应该是:使得,故C错误.

因为,所以命题p是真命题,故是假命题,故D错误.

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱锥PABC中,平面PBC⊥平面ABC,∠ACB90°BCPC2,若ACPB,则三棱锥PABC体积的最大值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,底面为等边三角形,EF分别为的中点,.

1)证明:平面

2)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长等于2正方形中,点Q中点,点M,N分别在线段上移动(M不与A,B重合,N不与C,D重合),且,沿着将四边形折起,使得二面角为直二面角,则三棱锥体积的最大值为________;当三棱锥体积最大时,其外接球的表面积为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图一所示,四边形是边长为的正方形,沿点翻折到点位置(如图二所示),使得二面角成直二面角.分别为的中点.

1)求证:

2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是公差为1的等差数列,是单调递增的等比数列,且.

1)求的通项公式;

2)设,数列的前项和,求

3)若数列的前项积为,求.

4)数列满足,其中,求.

5)解决数列问题时,经常需要先研究陌生的通项公式,只有先把通项公式研究明白,然后尽可能转化为我们熟悉的数列问题,由此使问题得到解决.通过对上面(2)(3)(4)问题的解决,你认为研究陌生数列的通项问题有哪些常用方法,要求介绍两个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,面,底面为矩形,且O的中点,点E上,且

1)证明:

2)在上是否存在一点F,使,若存在,试确定点F的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形中,,以为折痕把折起,使点到达点的位置,且.

1)证明:平面

2)若的中点,二面角等于60°,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数,为直线的倾斜角),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)写出曲线的直角坐标方程,并求时直线的普通方程;

2)若直线和曲线交于两点,点的直角坐标为,求的最大值.

查看答案和解析>>

同步练习册答案