精英家教网 > 高中数学 > 题目详情
11.不等式$|\begin{array}{l}{a}&{1}\\{1}&{\frac{x}{x-1}}\end{array}|$<0的解集为{x|x<1或x>2},那么a的值等于$\frac{1}{2}$.

分析 要求的不等式即 a•$\frac{x}{x-1}$-1<0,即(x-1)•(a-1)(x-$\frac{1}{1-a}$)<0.再根据的解集为{x|x<1或x>2},可得$\left\{\begin{array}{l}{a-1<0}\\{\frac{1}{1-a}=2}\end{array}\right.$,由此求得a的值.

解答 解:不等式$|\begin{array}{l}{a}&{1}\\{1}&{\frac{x}{x-1}}\end{array}|$<0,即 a•$\frac{x}{x-1}$-1<0,即$\frac{(a-1)x+1}{x-1}$<0,即(x-1)•(a-1)(x-$\frac{1}{1-a}$)<0.
再根据的解集为{x|x<1或x>2},可得$\left\{\begin{array}{l}{a-1<0}\\{\frac{1}{1-a}=2}\end{array}\right.$,求得a=$\frac{1}{2}$,
故答案为:$\frac{1}{2}$.

点评 本题主要考查分式不等式的解法,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数y=4x+$\frac{1}{x}$(x>0),那么当y取得最小值时,x的值是(  )
A.4B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设α∈R,函数f(x)=$\sqrt{2}$sin2xcosα+$\sqrt{2}$cos2xsinα-$\sqrt{2}$cos(2x+α)+cosα,x∈R.
(1)若α∈[$\frac{π}{4}$,$\frac{π}{2}$],求f(x)在区间[0,$\frac{π}{2}$]上的最大值;
(2)若f(x)=3,求a与x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{x}^{2}-1}{{x}^{2}+1}$,x为一切实数,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合A={x|x2-2x≤0,x∈R},B={x|x≥a},若A∪B=B,则实数a的取值范围是(  )
A.(-∞,0)B.(-∞,0]C.(0,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.则
①函数f(x)=(x-1)3是单函数:
②函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,}&{x≥2}\\{2-x,}&{x<2}\end{array}\right.$是单函数
③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2
④若函数f(x)在定义域内某个区间D上具有单调性,则f(x)一定是单函数
以上命题正确的是(  )
A.①④B.②③C.①③D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$\overrightarrow{OA}=(1,0),\overrightarrow{OC}=(-1,\sqrt{3})$,$\overrightarrow{CB}$=(cosα,sinα),则$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角的取值范围为(  )
A.$[\frac{π}{2},\frac{5π}{6}]$B.$[\frac{π}{2},\frac{2π}{3}]$C.$[\frac{2π}{3},\frac{5π}{6}]$D.$[\frac{π}{6},\frac{2π}{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)是偶函数,且当x≥0时有f(x)=x(1+x),试求当x<0时,f(x)的函数表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=x2+px+q满足f(1)=5,f(0)=1,则f(-1)=-1.

查看答案和解析>>

同步练习册答案