精英家教网 > 高中数学 > 题目详情
抛物线的准线方程是
A.B.C.D.
A

试题分析:抛物线的准线方程是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线C的顶点在原点,开口向右,过焦点且垂直于抛物线对称轴的弦长为2,过C上一点A作两条互相垂直的直线交抛物线于P,Q两点.

(1)若直线PQ过定点,求点A的坐标;
(2)对于第(1)问的点A,三角形APQ能否为等腰直角三角形?若能,试确定三角形APD的个数;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点A(3,2), 点P是抛物线y2=4x上的一个动点,F为抛物线的焦点,求的最小值及此时P点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线(k>0)与抛物线相交于AB两点,的焦点,若,则k的值为()
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点到准线的距离是( )
A.2B.4 C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线的焦点F作直线AB,CD与抛物线交于A、B、C、D四点,且,则的最大等于 (    )
A.-4
B.-16
C.4
D.-8

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线y2=2px的准线方程为x=-2,该抛物线上的每个点到准线x=-2的距离都与到定点N的距离相等,圆N是以N为圆心,同时与直线l1:y=x和l2:y=-x相切的圆,
(1)求定点N的坐标;
(2)是否存在一条直线l同时满足下列条件:
①l分别与直线l1和l2交于A、B两点,且AB中点为E(4,1);
②l被圆N截得的弦长为2.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F是抛物线y2=4x的焦点,P是圆x2+y2-8x-8y+31=0上的动点,则|FP|的最小值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平面直角坐标系中,抛物线上纵坐标为的点到焦点的距离
,则焦点到准线的距离为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案