如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,BB1=,M是线段B1D1的中点.
(1)求证:BM∥平面D1AC;
(2)求证:D1O⊥平面AB1C;
(3)求二面角B-AB1-C的大小.
科目:高中数学 来源: 题型:解答题
如图,在四面体ABCD中作截面PQR,若PQ、CB的延长线交于M,RQ、DB的延长线交于N,RP、DC的延长线交于K.
求证:M、N、K三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,P为DN的中点.
(1)求证:BD⊥MC;
(2)线段AB上是否存在点E,使得AP∥平面NEC?若存在,说明在什么位置,并加以证明;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.
(1)求证:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求二面角C-PB-A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.
(1)求证:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求点B到平面MAC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥中,底面是边长为2的正方形,侧面底面,且为等腰直角三角形,,、分别为、的中点.
(1)求证://平面 ;
(2)若线段中点为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在空间直角坐标系O-xyz中,正四棱锥P-ABCD的侧棱长与底边长都为,点M,N分别在PA,BD上,且.
(1)求证:MN⊥AD;
(2)求MN与平面PAD所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com