精英家教网 > 高中数学 > 题目详情
11.用数学归纳法证明1+a+a2+…+an+1=$\frac{{1-{a^{n+2}}}}{1-a}({a≠0,1,n∈{N^*}})$,在验证n=1成立时,计算左边所得的项是(  )
A.1B.1+aC.a2D.1+a+a2

分析 在验证n=1时,左端计算所得的项.把n=1代入等式左边即可得到答案.

解答 解:用数学归纳法证明1+a+a2+…+an+1=$\frac{{1-{a^{n+2}}}}{1-a}({a≠0,1,n∈{N^*}})$,在验证n=1时,把当n=1代入,
左端=1+a+a2
故选:D.

点评 此题主要考查数学归纳法证明等式的问题,属于概念性问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若双曲线$\frac{x^2}{9}-\frac{y^2}{4}=1$的两条渐近线恰好是曲线$y=a{x^2}+\frac{1}{3}$的两条切线,则a的值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果曲线y=f(x)在点(2,3)处的切线过点(-1,2),则有(  )
A.f′(2)<0B.f′(2)=0C.f′(2)>0D.f′(2)不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知过原点O的圆x2+y2-2ax=0又过点(4,2),(1)求圆的方程,(2)A为圆上动点,求弦OA中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.化简sin690°的值是(  )
A.0.5B.-0.5C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知A∈α,P∉α,$\overrightarrow{PA}$=(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,x)其中x>0,且|$\overrightarrow{PA|}$|=$\sqrt{3}$,平面α的一个法向量$\overrightarrow n=(0,-\frac{1}{2},-\sqrt{2})$.
(1)求x的值;
(2)求直线PA与平面α所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.对$?x∈(\;0\;,\;\frac{1}{3}\;)$,23x≤logax+1恒成立,则实数a的取值范围是(  )
A.$(\;0\;,\;\frac{2}{3}\;)$B.$(\;0\;,\;\frac{1}{2}\;]$C.$[\;\frac{1}{3}\;,\;1\;)$D.$[\;\frac{1}{2}\;,\;1\;)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.3、已知函数$f(x)=\left\{\begin{array}{l}1-{2^x},x≤0\\{x^2},x>0\end{array}\right.$,则f[f(-1)]=(  )
A.2B.1C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知定义在R上的偶函数f(x),满足f(x+4)=f(x)+f(2),且0≤x≤2时,f(x)=$\left\{\begin{array}{l}-12{x^2}+12x,x∈[{0,1}]\\-4{x^2}+12x-8,x∈(1,2]\end{array}$,若函数g(x)=f(x)-a|x|(a≠0),在区间[-3,3]上至多有9个零点,则a=20-8$\sqrt{6}$.

查看答案和解析>>

同步练习册答案