如图,已知一四棱锥P-ABCD的底面是边长为1的正方形,且侧棱PC⊥底面ABCD,且PC=2,E是侧棱PC上的动点
(1)求四棱锥P-ABCD的体积;
(2)证明:BD⊥AE。
(3)求二面角P-BD-C的正切值。
(1);(2)见解析;(3).
【解析】
试题分析:(1)根据四棱锥P-ABCD的底面是边长为1的正方形,侧棱PC⊥底面ABCD,知高为PC=2. 应用体积计算公式即得;
(2)连结AC,根据ABCD是正方形,得到BD⊥AC ,由PC⊥底面ABCD 得到BD⊥PC,推出BD⊥平面PAC;由于不论点E在何位置,都有AE平面PAC,故得BD⊥AE;
(3)设相交于,连,可知是二面角P-BD-C的的一个平面角,计算其正切即得二面角P-BD-C的正切值.
试题解析:(1)该四棱锥P-ABCD的底面是边长为1的正方形,
侧棱PC⊥底面ABCD,且PC=2.
∴ 4分
(2)连结AC,∵ABCD是正方形
∴BD⊥AC ∵PC⊥底面ABCD 且平面 ∴BD⊥PC
又∵∴BD⊥平面PAC
∵不论点E在何位置,都有AE平面PAC
∴BD⊥AE 8分
(3)设相交于,连,由四棱锥P-ABCD的底面是边长为1的正方形,PC⊥底面ABCD知,是二面角P-BD-C的的一个平面角,,即二面角P-BD-C的正切值为.
考点:垂直关系,几何体的体积,二面角的计算.
科目:高中数学 来源:2013-2014学年天津市蓟县高三第一次模拟考试文科数学试卷(解析版) 题型:解答题
已知椭圆的长轴长为,离心率为,分别为其左右焦点.一动圆过点,且与直线相切.
(1)(ⅰ)求椭圆的方程;(ⅱ)求动圆圆心轨迹的方程;
(2)在曲线上有四个不同的点,满足与共线,与共线,且,求四边形面积的最小值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年天津市高三5月理科数学试卷(解析版) 题型:选择题
是两个非零向量,且,则与的夹角为( )
A.300 B.450 C.600 D.900
查看答案和解析>>
科目:高中数学 来源:2013-2014学年天津市高三5月文科数学试卷(解析版) 题型:选择题
已知m,n为两条不同的直线,为两个不同的平面,,则下列命题中的假命题是( )
A.若m//n,则
B.若,则
C.若相交,则相交
D.若相交,则相交
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com