精英家教网 > 高中数学 > 题目详情
20.若点A是圆C:(x+1)2+y2=1上的动点,点P满足$\overrightarrow{CP}$=2$\overrightarrow{CA}$,则点P的轨迹方程是(x+1)2+y2=4.

分析 设P(x,y),A(a,b),由点P满足$\overrightarrow{CP}$=2$\overrightarrow{CA}$,可得A点坐标,代入圆C:(x+1)2+y2=1,整理即得点P的轨迹方程.

解答 解:设P(x,y),A(a,b),
∵点P满足$\overrightarrow{CP}$=2$\overrightarrow{CA}$,
∴(x+1,y)=2(a+1,b),
∴a=$\frac{x-1}{2}$,b=$\frac{y}{2}$
∵点A是圆C:(x+1)2+y2=1上的动点,
∴(x+1)2+y2=4,
故点P的轨迹方程是(x+1)2+y2=4.
故答案为:(x+1)2+y2=4.

点评 本题的考点是轨迹方程,考查用代入法求支点的轨迹方程,代入法适合求动点与另外已知轨迹方程的点有固定关系的点的轨迹方程,用要求轨迹方程的点的坐标表示出已知轨迹方程的点的坐标,再代入已知的轨迹方程,从而求出动点的坐标所满足的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知不等式x2-(1+a)x+a<0;
(1)若该不等式的解集为(1,2),求a的值;
(2)若a∈R,解该不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=a+$\frac{2}{{{2^x}+1}}$(a∈R)
(Ⅰ)若函数f(x)为奇函数,求实数a的值;
(Ⅱ)用定义法判断函数f(x)的单调性;
(Ⅲ)若当x∈[-1,5]时,f(x)≤0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A,B,是直二面角α-l-β的棱上两点,线段AC?α,线段BD?β,且AC⊥l,BD⊥l,AC=12,AB=4,BD=3,求线段CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex-2ax-1.
(1)讨论函数f(x)的极值;
(2)若函数f(x)在[0,2]上单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lg$\frac{kx-1}{x-1}$.
(1)求f(x)的定义域;
(2)若f(x)在[2,+∞)上单调增,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设不等式组$\left\{\begin{array}{l}{x+y≤2}\\{2x-y≤1}\\{x≥0,y≥0}\end{array}\right.$表示的平面区域为D,向区域D内任投一点P,则点P落在圆x2+y2=2内的概率为$\frac{5}{π+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知椭圆$\frac{x^2}{4}+\frac{y^2}{a^2}=1$与双曲线$\frac{x^2}{a}-\frac{y^2}{2}=1$有相同的焦距,则实数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在正方体ABCD-A1B1C1D1中,三棱锥D1-AB1C的表面积与正方体的表面积的比为(  )
A.1:1B.1;$\sqrt{2}$C.1:$\sqrt{3}$D.1;2

查看答案和解析>>

同步练习册答案